Tagged: adaptation

Lac Mono (Source : F. van Breugel)

L’été, les rives du lac Mono en Californie sont envahies pas des millions de petites mouches. La densité est telle qu’elle atteint parfois par endroit plus de 2000 mouches sur la surface d’une carte postale, pour une population totale estimée à plus de 100 milliards d’individus. Ces mouches appartiennent à une espèce : Hephydra hians (Hephydridae). Les adultes sont connus pour leur mode de vie et leur comportement subaquatique des plus surprenants et singuliers : ils ont en effet la capacité à s’immerger complètement sous l’eau à la fois pour se nourrir et pour pondre leurs oeufs.

Les premières observations et descriptions des moeurs de cet insecte remontent à 150 ans et ont été faites par l’écrivain Mark Twain (1835-1910) sous ces mots : « vous pouvez les maintenir sous l’eau aussi longtemps que vous le souhaitez – sans que cela les dérange – elles sont seulement fières d’elles. Quand vous les laissez partir, elles remontent entièrement sèches à la surface, et marchant avec autant d’insouciance que si elles avaient été éduquées dans le but d’offrir un divertissement instructif à l’homme« .

Biologie et écologie de Hephydra hians

Hephydra hians est une de 4 à 7mm, de couleur marron foncé avec des reflets verts métalliques sur le thorax. L’espèce à la particularité de se développer dans des eaux à forte salinité, expliquant son nom de mouche alcaline. L’eau du lac Mono possède en effet une teneur en sel trois fois supérieure à celle de l’Océan Pacifique, avec une forte concentration en bicarbonate de sodium (NA2CO3), qui lui confère une alcalinité particulière (pH=10). Cette salinité résulte du non renouvellement de l’eau depuis 60 000 ans et d’une évaporation régulière et constante. Le calcium (CaCO3) qui l’accompagne provient quand à lui de sources naturelles.

Hormis H. hians, seuls des algues, des bactéries et des crevettes halophiles tolèrent cet environnement. Les mouches adultes, vivant entre 3 et 5 jours, peuvent ainsi s’alimenter d’algues et pondre sans craindre la concurrence ou la prédation. Le rôle écologique de ce lac est très important dans cette région car il offre une ressource alimentaire à près de 2 millions d’oiseaux migrateurs qui y font halte chaque année (par exemple, 85% de la population de goéland de Californie rejoignent le lac pour nicher) (voir vidéo en bas de page).

Hephydra hians dans sa bulle d’air (Source : F. van Breugel)

Il est primordial pour ces mouches de demeurer sèche pour leur survie. Le fait d’être mouillées engendrerait le dépôt d’une fine couche de minéraux sur leur cuticule (squelette externe des insectes), augmentant par conséquent la probabilité d’être à nouveau mouillées lors d’un prochain contact avec l’eau. Pour se protéger de l’élément liquide nocif lors de la plongée, les mouchent s’entourent d’une bulle d’air protectrice englobant à la fois le corps et les ailes. Cette boule leur permet ainsi de se protéger des sels et des composants alcalins et d’apporter l’oxygène tel un poumon externe (photo ci-contre). Grâce à ce scaphandre, la mouche peut rester immergée près de 15mn à des profondeurs de 4 à 8m. Pour rejoindre la surface, elle lâche prise et se laisse tout simplement porter où elle va pouvoir flotter, marcher sur l’eau ou encore s’envoler (voir vidéo ci-dessous).

Or, depuis 150 ans, la formation de cette bulle d’air et la capacité de Hephydra hians à s’immerger dans ces eaux aussi alcalines sont demeurées un mystère pour la science. C’est pourquoi, deux scientifiques du département de Biologie de l’Institut Technique de Californie (ITC), Floris van Breugel et Michael Dickinson ont mené des études les propriétés physico-chimiques uniques de la cuticule de ces mouches à l’origine de la formation de la bulle d’air (en partie financées par le National Geographic Society).

Adaptation à la plongée 

La cuticule des mouches de la famille des Hephydridae est recouverte par de nombreux poils minuscules (setae) et par des cires (hydrocarbures).

Hephydra hians dans sa bulle d’air (Source : F. van Breugel)

Pour mieux comprendre les phénomènes physico-chimiques à l’origine du pouvoir hydrophobique des poils, les scientifiques ont d’abord observé au microscope l’aspect et la répartition des poils à la surface de la cuticule. Ils ont constaté que ces mouches possédaient un tapis de poils plus denses de 36% sur leur corps et leurs pattes que d’autres espèces de mouches apparentés (34% sur les ailes, 44% sur le thorax, 47% sur l’abdomen) (voir photo ci-contre).

Puis, pour mesurer les forces de tension à la surface de l’eau et de la cuticule de ces insectes, ils ont construit un capteur minuscule et plongé des centaines d’individus de H. hians, et de 6 autres espèces apparentées, dans une série de solution salines différentes en en faisant varier la salinité, le pH et la densité. La formation de la bulle d’air à la surface de la cuticule a pu être observée à l’aide de caméras à (suite…)

Des gènes à l’origine de traits nouveaux donnant accès à un nouvel environnement

chez la punaise Rhagovelia (Heteroptera, Gerromorpha, Veliidae)

Les innovations évolutives se traduisent par l’apparition de nouvelles structures ou comportements au cours de l’évolution (ex : la fleur, la carapace des tortues, l’aile des insectes (lien), un patron de coloration chez les papillons (lien)). La théorie prédit que ces événements d’apparition sont uniques à chaque innovation et rares. C’est ainsi que les innovations sont partagées par des groupes d’espèces apparentées, des taxons (ex : respectivement, les angiospermes, les oiseaux, les tortues, les insectes, les papillons). L’apparition de nouvelles structures est le premier mécanisme par lequel les innovations participent à la diversification du vivant.

Une innovation est considérée comme clé, importante, lorsqu’elle permet l’adaptation à une nouvelle niche écologique via une nouvelle fonction. La théorie prédit que l’opportunité écologique ainsi créée va permettre la diversification de l’espèce possédant l’innovation en groupe d’espèces.  C’est le deuxième mécanisme par lequel les innovations participent à la diversification du vivant. Ainsi, elles façonnent les trajectoires évolutives des lignées dans lesquelles elles apparaissent.

L’importance de certaines de ces innovations pousse les chercheurs à se demander quels sont les mécanismes génétiques et développementaux à leur origine. Ils cherchent à faire le lien entre les changement génétiques, phénotypiques et adaptatifs à un nouveau milieu.

Punaises du genre Rhagovelia à la surface de l’eau (Source : A. Khila, 2017)

Pour tenter de répondre à ces questions, l’équipe de Khila Abderrahman (CNRS-UMR5242, Université de Lyon) a étudié les mécanismes génétiques et les pressions environnementales qui sous-tendent l’évolution de « l’éventail propulseur » (photo 2 ci-dessous), structure exclusive des punaises du genre Rhagovelia (Heteroptera, Gerromorphe, Veliidae) qui leur permet de se propulser à la surface de l’eau.

Leurs résultats mettent en évidence le rôle central de gènes qui sont spécifiques au taxon. L’un d’eux n’est présent que chez les punaises d’eau et l’autre que dans le groupe qui possède l’éventail (le genre Rhagovelia). Ces deux gènes sont impliqués dans le développement de l’éventail. De plus, l’utilisation de tests biomécaniques a prouvé le rôle essentiel de l’éventail dans l’adaptation à un nouvel environnement, agissant ainsi comme une innovation déterminante au plan évolutif.

Biologie et description des Rhagovelia

Le genre Rhagovelia (photo 1 ci-dessous) est constitué de ∼200 espèces dont le cycle biologique se déroule, en général, à la surface de petits courants d’eau rapides – niche écologique pas ou peu accessible à la plupart des autres insectes semi-aquatiques -. Ces punaises aquatiques se déplacent à la surface par des mouvements d’aviron de la paire de pattes médianes où se situent les éventails. Un éventail se compose d’environ 20 branches (ou fanes) primaires chacune, dotée de branches secondaires plus minces (photo 2 ci-contre). Contrairement à Rhagovelia, le genre Stridulivelia, qui lui est étroitement apparenté, ne possède pas d’éventail de propulsion. Bien que les espèces des deux genres occupent les mêmes cours d’eau (espèces sympatriques), les punaises du genre Stridulivelia restent statiques sur les feuilles des plantes et n’effectuant qu’occasionnellement des déplacements rapides (voir vidéo 1).

Photo 1 : Rhagovelia antilleana – les éventails sont visibles sur les pattes médianes (Source : Sciencesnews.org)

Photo 2 : éventail propulseur chez Rhagovelia antilleana (Source : Santos et al., 2017) (Modifié par B. gilles)

Le développement embryonnaire de l’éventail débute entre 144 et 210 heures, soit à 35% de la durée totale de l’embryogenèse (à 26°C). Les larves du premier stade éclosent avec des éventails entièrement fonctionnels, renouvelés au cours de chacune de leurs cinq mues, indiquant la persistance du programme de développement du éventail tout au long des stades post-embryonnaires (illustration 1 ci-dessous).

Illustration 1 : Développement de l’éventail au 1er, 3ème et 5ème stade larvaire – augmentation de la taille et du nombre des branches (Source : Santos et al., 2017)

Analyses génétiques

Pour identifier les gènes à l’origine du développement de l’éventail, l’équipe de scientifiques a réalisé un profilage transcriptomique (étude de l’ensemble des ARN messager produits lors du processus de transcription d’un génome) des pattes embryonnaires chez Rhagovelia antilleana. L’étude de l’expression de ces ARNm a permis d’identifier 5 gènes s’exprimant uniquement dans la paire de pattes médianes et à l’endroit où se développe l’éventail : y (yellow), cp19 (cuticular protéine 19), ccdc174 (coiled-coil domain-containing protéine 174) et deux gènes similaires inconnus (c67063_g1 et c68581_g1, respectivement nommé geisha et mother-of-geisha) (illustration 2 ci-dessous). Aucun de ces gènes ne s’exprime dans les pattes antérieures et postérieures de R. antilleana ou de toute autre espèce apparentée comme Stridulivelia tersa et Oiovelia cunucunumana.

Illustration 2 : Expression des 5 gènes à l’apex de la patte médiane de Rhagovelia (Source : Santos et al., 2017)

Une recherche d’homologie des séquences liées à geisha et mother-of-geisha a montré que mother-of-geisha possédait un paralogue (gène homologue) retrouvé chez 5 espèces d’Hémiptères (punaises) et une d’Isoptères (termites). Aucun de ces deux gènes ne possède d’homologue dans d’autres Ordres comme les Lépidoptères, les Diptères et les Hyménoptères. Le gène mother-of-geisha possède cependant de proches homologues dans les espèces de punaise d’eau n’ayant pas d’éventail (i.e. autres que Rhagovelia) alors que toutes les espèces de Rhagovelia et seulement celles-ci partagent le gène geisha Les chercheurs concluent que mother-of-geisha a émergé chez une espèce ancestrale commune à tous les Hémiptères et s’est ensuite dupliqué chez l’ancêtre commun du clade des Rhagovelia pour donner geisha. Dans cet ancêtre commun, la séquence de geisha a évolué très rapidement et a divergé de celle de mother-of-geisha (illustration 3 ci-dessous). C’est ainsi que les gènes ont (suite…)

Les fourmis du désert de l’espèce Cataglyphis bombycina vivent dans des milieux aux conditions de température extrêmes. En pleine journée, malgré une température extérieure parfois proche de 70°C à la surface du sol, elles parviennent à maintenir leur température corporelle en deçà des 53,6°C mortels. Une équipe américaine, menée par Normann Nan Shi, viennent de percer le mystère de cette prouesse et le rôle des poils de couleur argent présent à la surface de leur corps. La configuration unique de ces poils, de forme triangulaire, offre à ces fourmis la capacité de refléter à la fois la quasi-totalité des ondes lumineuses du spectre visible et celles des infra-rouges : un double phénomène de thermorégulation permettant une dissipation particulièrement efficace de la chaleur à la surface de l’insecte. 

Fourmis du désert

Aussi appelées « fourmis argentées » en raison de leurs reflets métalliques, les Cataglyphis bombycina se rencontrent dans le désert du Sahara, l’une des régions les plus chaudes et les plus hostiles de la planète (voir illustration 1). Les individus, pour éviter les prédateurs nocturnes (reptiles par exemple), partent durant la journée en quête de nourriture : des cadavres d’insectes tués par une chaleur dépassant parfois à midi les 70°C au sol (voir vidéos en fin de page).

Illustration 1 : A) Individu Cataglyphis bombycina, B) Tête recouverte de poils argentés, C) Poils argentés se rétrécissant à leur extrémité, D) Coupe transversale de poils de forme triangulaire, E) face à fond plat du poils (Shi et al., 2015)

Illustration 1 : A) Individu Cataglyphis bombycina, B) Tête recouverte de poils argentés, C) Poils argentés se rétrécissant à leur extrémité, D) Coupe transversale de poils de forme triangulaire, E) face à fond plat du poils (Source : Shi et al., 2015)

Cette espèce a acquis, au cours de l’évolution, des adaptations physiologiques et anatomiques lui permettant de survivre avec des températures corporelles proche de 50°C (température létale : 53,6°C) et d’occuper ainsi une niche écologique sans concurrence.

Au cours de leurs déplacements, ces fourmis réalisent des pauses afin d’évacuer le surplus de chaleur, un comportement appelé : cooling-off. Aux heures les plus chaudes, ces arrêts peuvent représenter près de 70% du temps de déplacement.

A l’aide de mesures optiques et thermodynamiques, Shi et ses collègues ont modélisé les transferts de chaleur à la surface du corps des fourmis. L’idée est de comprendre comment un réseau de poils de forme triangulaire leur permet de maintenir des températures inférieures à celle de leur environnement (espèce poïkilotherme : ayant une température corporelle dépendante de celle de l’environnement, aussi appelée espèce à « sang froid »). Les scientifiques ont démontré l’intervention de deux phénomènes physiques : (suite…)

Une intéressante découverte sur les relations de mutualisme qu’entretiennent les fourmis coupe-feuille (« champignonnistes ») et les champignons qu’elle cultivent vient d’être publiée dans la revue Nature. Les recherches, menées par l’entomologiste Danois Henrik Hjavard De Fine Licht et son équipe démontrent grâce à des analyses comparatives d’expressions génétiques et moléculaires, que les fourmis dépendent du champignon pour synthétiser certaines enzymes et acides aminés essentiels, une capacité perdue par les insectes au cours de l’évolution. Le champignon, en plus d’être une source de nutriments, constitue de ce fait une voie de synthèse moléculaire indispensable au fourmis. Ainsi, fourmis et champignons se comportent comme un seul et même organisme, connecté par un important réseau d’interactions, où chacun joue des rôles spécifiques comme des organes dans un organisme.

Certaines espèces ont mis en place au cours de l’évolution des relations à avantages réciproques (nourriture, protection, reproduction…) : le mutualisme. Les fourmis champignonnistes et le champignon qu’elles cultivent se sont co-adaptées au niveau morphologique, physiologique et comportemental au point de devenir totalement dépendants l’un de l’autre. Leur interdépendance est telle qu’aujourd’hui, la survie de l’un ne peut se faire sans la présence de l’autre : ce type de mutualisme est dit symbiotique. Les fourmis se nourrissent du champignon (un Basidiomycète du genre Leucoagaricus) qui se développe sur un substrat de matière végétale apportée par les fourmis (lire également cet article). Le champignon, isolé sexuellement, dépend entièrement de l’insecte pour sa multiplication : il s’agit d’une endosymbiose (par opposition à l’ectosymbiose où les deux organismes sont indépendants pour leur reproduction).

Illustration de Gongylidia et de Staphylae du Basidiomycète

Illustration de Gongylidia et de Staphylae du Basidiomycète (Source : De Fine Licht, 2014)

L’histoire évolutive de ce mutualisme remonte à environ 50 millions d’années. Il y a 20-25 millions d’années, l’émergence chez le champignon, d’organes riches en glucides, en lipides et en enzymes : les gongylidae, regroupés en bouquets (staphylae), satisfaisant l’ensemble des besoins nutritifs des fourmis, a augmenté la dépendance des insectes au champignon pour leur alimentation (voir illustration ci-contre). Cette innovation majeure coïncide également avec l’isolement sexuel du champignon, devenu dépendant des fourmis pour sa reproduction et sa multiplication. Ces deux événements ont conduits les deux espèces ancestrales à (suite…)

Les insectes et les végétaux entretiennent des relations d’interdépendance depuis l’apparition des plantes à fleurs au Crétacé (145-65 millions d’années) (lire cet article). Cette co-évolution entre plantes à fleurs et les insectes est à l’origine de la diversité des interactions inter-spécifiques, des espèces et des cycles biologiques.

Parmi ces relations, certaines sont favorables aux deux protagonistes (la plante et l’insecte) : ce type d’interactions à bénéfices réciproques constitue  mutualisme. L’insecte se développe, s’alimente, effectue son cycle reproductif en totalité ou en partie via l’organisme végétal, et en contrepartie, la plante est pollinisée et fécondée. L’insecte joue alors le rôle de transporteur des grains de pollen d’une fleurs à l’autre, contribuant ainsi au maintien de la diversité génétique de l’espèce végétale.

Parfois, deux espèces peuvent avoir évolué de manière à ne pouvoir vivre l’une sans l’autre: elles deviennent totalement dépendante. Un exemple de mutualisme parmi les plus remarquables est probablement celui des guêpes de la famille des Agaonidae (Chalcidiens-Hyménoptères) et des figuiers. C’est cette association étonnante que vous découvrirez dans ces lignes.

 La figue :
Coupe transversale d'une figue (Source : Wikipedia)

Coupe transversale d’une figue (Source : Wikipedia)

Contrairement à ce que l’on peut croire, la figue n’est pas un fruit!! Il s’agit en fait d’un réceptacle floral refermé sur lui-même, enfermant les fleurs femelles et les fleurs mâles. La figue forme ainsi une urne (Syconium), dont l’ouverture située au sommet (ostiole) est fermée par des bractées (des sortes de feuilles à la base du pédoncule florale). La moitié environ des espèces sont dites monoïques (une figue porte des fleurs mâles et femelles), les autres étant dioïques (les fleurs mâles et femelles sont portées par des arbres différents).

Dans le monde, plus de 800 espèces de figuiers, regroupées en 20 genres, sont recensées, dont la grande majorité se rencontre dans les forêts tropicales : le genre Ficus regroupe le plus grand nombre d’espèce.

La figue, impropre chimiquement à un grand nombre de phytophages (animaux se nourrissent de matière végétale) jusqu’à sa maturation, offre également un environnement intérieur protecteur pour tout insecte ayant la possibilité de s’y installer. C’est ainsi, qu’au cours de l’évolution, de nombreuses espèces d’insectes (Diptères, Coléoptères, Hyménoptères) ont réussi à en tirer avantage à l’aide d’innovations et d’adaptations morphologiques. Mais les guêpes Agaonides vont plus loin : (suite…)

Description générale des différents types de pièces buccales des insectes adaptées au régime alimentaire

Les insectes, présents sur terre depuis au moins 479 millions d’années (lire cet article), ont pu conquérir tous les types de milieu et d’environnement grâce à leur capacité d’exploiter l’ensemble des ressources alimentaires de ces milieux. La sélection naturelle a favorisé, au cours de l’évolution, l’adaptation de pièces buccales spécialisées au régime alimentaire de l’espèce, voire même à une période précise du cycle de développement de l’insecte (exemple : chenille/papillon).

On a tous pu observer des insectes en train de se nourrir, papillons, mouches, coléoptères… etc., vous avez sans doute remarqué la grande diversité des modes d’alimentation et des types de pièces buccales. Certains broient leur nourriture comme les chenilles (Lépidoptères), les Coléoptères et les Hyménoptères (guêpes, fourmis), d’autres aspirent comme les moustiques (Diptères) et les punaises (Hémiptères), d’autres lèchent comme les mouches (Diptères) et d’autres ne s’alimentent pas à l’état adulte (imago) et ont des pièces buccales atrophiées (Lépidoptères, Plécoptères, Coléoptères….). Ces types ont été classées en 3 grandes catégories :

  1. les « broyeurs« 
  2. les « piqueurs« 
  3. les « suceurs« 
Différents types d'orientation des pièces buccales chez les insectes (Source : University Utah)

Différents types d’orientation des pièces buccales chez les insectes (Source : University Utah)

Les pièces buccales se situent sur la tête selon 3 axes (voir illustration ci-contre) :

  1. Prognathesdirigées vers l’avant dans l’axe du corps (Coléoptères phytophages par exemple)
  2. Orthognathes (Hypognathes en anglais) : dirigées vers le bas perpendiculaires à l’axe du corps comme les criquets et sauterelles (Orthoptères) et les mouches (Diptères)
  3. Hypognathes (Opisthognathes en anglais) : dirigées vers l’arrière comme les punaises (Hémiptères).

Les insectes peuvent être également classés en (suite…)