Tagged: anatomie

Les yeux (la vision), dans leur diversité de forme et de structure, permettent à un organisme, quel qu’il soit (invertébrés et vertébrés), de collecter l’énergie lumineuse (photons), de la convertir en énergie électrique qui sera ensuite transmise au cerveau via des neurones où elle sera analysée et interprétée pour donner naissance à une représentation mentale de l’environnement à l’animal lui permettant de se déplacer, de repérer une proie ou un partenaire sexuel.

Cependant, l’oeil des arthropodes est différent de celui des vertébrés tant au niveau de son anatomie que de son mode de fonctionnement. Cette série de trois articles essaie d’apporter une synthèse générale sur la vision chez les insectes : 1) Anatomie et structure des yeux ; 2) Vision et perception du mouvement ; 3) Physiologie des récepteurs et mécanismes de régulation de la sensibilité à la lumière.

I. Transduction de l’énergie lumineuse en énergie électrique

La conversion d’un signal lumineux en énergie électrique puis en message nerveux implique un mécanisme appelé phototransduction. Ce processus fait intervenir des récepteurs protéiques photosensibles : les pigments visuels, appelés rhodopsines. Chez les insectes, ces protéines se rencontrent dans de petites structures spécialisées : les chromophores, elles même présentent dans le rhabdomère des ommatidies (lire cet article).

Oeil composé et ommatidies d’un insecte (Source : Ecole Polytechnique Fédérale de Lausanne)

Par exemple, chez la drosophile (Drosophila melanogaster), 500 à 2000 molécules de rhodopsines sont présentent dans chacune des 40 000 microvilli que contient un rhabdomère d’une ommatidie.

Lorsqu’un photon (particule lumineuse) est absorbé par une molécule de rhodopsine, une cascade complexe d’événements chimiques entraine une dépolarisation (changement de charge électrique) de la membrane d’une cellule nerveuse (neurone).

La probabilité pour qu’un photon rencontre une molécule de rhodopsine dépend de la longueur du rhabdomère : ainsi, avec une longueur de 80µm, le rhabdomère de la drosophile absorbe 26% de la lumière contre 100% chez la libellule. Chez d’autres espèces, nocturnes ou évoluant dans la pénombre, un tapetum* (surface réfléchissante) renvoie la lumière, tel un miroir, une deuxième fois vers le rhabdomère, augmentant ainsi la probabilité de rencontre d’un photon avec une molécule de rhodopsine et donc la sensibilité de l’organe visuel à la lumière.

*Tapetum : le même principe se retrouve chez les yeux de vertébrés nocturnes comme les chats, leurs yeux reflétant la lumière des phares d’une voiture par exemple.

II. Adaptation aux changements de luminosité

Les cycles nycthéméraux entrainent de grandes fluctuations importantes de luminosité entre le jour et la nuit : 4×10.20 photons par mètre carré et par seconde en journée contre 10.10 photons durant la nuit (variation d’un facteur 40 milliards !). Afin de pallier cette contrainte environnementale, les insectes ont développé de multiples adaptations situées à deux niveaux : 1) Régulation de la quantité de lumière atteignant les photorécepteurs ; 2) Modification de la sensibilité des photorécepteurs.

II.1. Régulation de la quantité de lumière atteignant les photorécepteurs

La quantité de lumière qui atteint le rhabdomère est régulée par le mouvement des pigments dans les cellules, mouvement parfois associé à la modification anatomique des ommatidies. Cette adaptation se retrouve en majorité dans des yeux composés de type « superposition » (lire cet article) (Illustration 1 ci-dessous).

Illustration 1 – Formation de l’image : a) dans un oeil composé de type apposition, la lentille formant une image inversée de l’objet, b) dans un oeil composé de type superposition, les rayons lumineux sont réfractés à l’intérieur de la lentille (Source : The Insects : Structure and Function – R.F. Chapman – 5ème Edition (2013) – p716 – Modifié par B. Gilles)

  • Yeux de types superposition

Les adaptations se situent à deux niveaux :

Illustration 2 – Exemple d’adaptation à 1) la nuit (à gauche) – 2) à la lumière (à droite) (Chez le genre Archicauliodes, Mégaloptères) – D’après Walcott, 1975 (Source : The Insects : Structure and Function – R.F. Chapman – 5ème Edition (2013) – p711 – Modifié par B. Gilles)

Pigments : dans un environnement obscur, les pigments sont situés dans la zone distale des cellules pigmentaires, permettant ainsi aux photons de se propager entre les ommatidies : zone claire (Illustration 2 ci-contre – cliquer dessus pour agrandir). A l’inverse, en présence d’une forte intensité lumineuse, les pigments se déplacent vers le centre des cellules afin de limiter l’entrée de lumière en diminuant la quantité de photons pénétrant dans l’ommatidie. A ce moment, le fonctionnement de l’oeil est similaire à celui de type « apposition », où chaque ommatidie fonctionne indépendamment des autres (lire cet article).

Un procédé similaire existe dans nos yeux, le cristallin se ferme ou s’ouvre plus ou moins en fonction de l’intensité lumineuse présente dans l’environnement.

Cellules photoréceptrices : l’adaptation au changement de luminosité se réalise par l’extension et la compression du cône cristallin, cantonnant le pigment aux parties périphériques de l’ommatidie. En présence d’une forte luminosité, les cellules photoréceptrices sont courtes et les cellules pigmentaires primaires s’étendent sous la lentille, ces déplacements peuvent représenter près de 15µm.

Les adaptations à une variation de luminosité requièrent parfois plusieurs minutes, voire davantage. Chez les fourmis Camponotus, les premiers changements interviennent 15 minutes après un changement d’intensité lumineuse pour se finir 2 heures après. Il existe une grande variété de tempo entre les espèces. Ainsi, chez les papillons de nuit (hétérocères) du genre Cydia (des Carpocapses), le processus complet, d’une durée de 1 heure, débute 1h30 avant le crépuscule ou l’aurore pour que l’adaptation soit terminée 30 min avant le changement total de luminosité.

L’intensité lumineuse perçue est également dépendante de (suite…)

Les yeux ont pour fonction de réceptionner et de guider l’énergie lumineuse (photons) vers des cellules réceptrices spécialisées (photorécepteurs) qui traduisent cette énergie photonique en énergie électrique. Transmise ensuite au cerveau par des neurones, elle sera analysée et interprétée pour donner naissance à une représentation mentale de l’environnement permettant à l’animal de se déplacer; de repérer sa proie ou son partenaire sexuel, etc.

Les yeux des vertébrés, constitués d’une structure unique, sont appelés yeux simples. Chez les arthropodes, les yeux sont, quant à eux, dits composés car constitués de plusieurs sous-unités similaires : les ommatidies.

Les yeux composés sont apparus tôt dans l’évolution. Ils ont été observés sur des fossiles de crustacés et de chélicérates (scorpions et araignées) du Cambrien (540-485 millions d’années) et sur des insectes du Dévonien (420-360 Ma). Cette période a été favorable à une grande diversification du monde animal. Les yeux composés de l’actuelle limule (Limulus sp., Chélicérates) sont ainsi restés inchangés depuis cette époque (lire cet article).

En raison de leur petite taille, l’observation et l’étude des yeux des insectes a du attendre l’invention du microscope au XVIIème siècle. Les premières descriptions en ont été réalisées par le chimiste, physicien et mathématicien anglais Robert Hooke en 1665, par le savant néerlandais Antoni Van Leeuwenhoek en 1695 et par le physiologiste autrichien Sigmund Exner en 1891.

I) Présence des yeux composés

Les yeux composés se retrouvent chez la quasi-totalité des espèces d’insectes : leur taille, leur forme et leur  structure varient cependant entre les familles et les espèces.

Chez les Aptérygotes (dépourvus d’ailes), insectes qualifiés de « primitifs », ils sont absents par exemple chez les Thysanoures (ordre d’insectes aptères) et les Protoures (arthropodes pancrustacés hexapodes longtemps considérés comme des insectes) et ne sont constitués que de 8 ommatidies chez les autres.

Par contre, chez les Ptérygotes (pourvus d’ailes), insectes qualifiés de « modernes », le nombre d’ommatidies peut être particulièrement élevé : 800 chez les drosophiles (Diptères), 7 500 chez les Diopsidae (Diptères) (lire cet article),  10 000 chez les bourdons (Hyménoptères), ou encore 30 000 chez les Odonates (libellules).

Certaines espèces cavernicoles, souterraines comme les termites (Isoptères), parasites aux ailes atrophiées (Phthiraptera et Siphonaptera), ou de cochenilles (Hémiptères) en sont dépourvus. L’oeil de la fourmi Hyponera punctatissima (Hyménorptères – Formicidae) n’est constitué, quant à lui, que d’une seule ommatidie.

II) Structure d’une ommatidie

Chaque ommatidie est constituée de 3 parties : optique, de collecte de la lumière et sensorielle.

Figure 1 : Oeil composé et ommatidies d'un insecte (Source : Ecole Polytechnique Fédérale de Lausanne)

Figure 1 : Oeil composé et ommatidies d’un insecte (Source : Ecole Polytechnique Fédérale de Lausanne)

Comme l’ensemble du corps des insectes, les yeux composés sont couverts d’une cuticule (lire cet article), mais pour des raisons évidentes, celle-ci est à cet endroit transparente, incolore et forme une cornée, ou lentille biconvexe, à la surface de chaque ommatidie.

Vu de dessus, les ommatidies forment des facettes hexagonales placées les unes à coté des autres (figure 1).

La cornée est synthétisée et sécrétée par deux cellules épidermiques, cellules cornéales, ou aussi cellules pigmentaires primaires. Sous la cornée se trouvent 4 cellules (cellules Semper) dont la fonction est de produire, chez certaines espèces, une seconde lentille rigide et transparente appelée cône cristallin (Figure 2). Sous la Cornée et le cône cristallin sont placées les cellules sensorielles (photorécepteurs ou cellules rétiniennes) qui sont des neurones allongés, généralement au nombre de 8, parfois de 7 ou de 9, bordées latéralement par 12 à 18 cellules de soutien, séparant les ommatidies entre elles, et appelées cellules pigmentaires secondaires (figure 2). Les photorécepteurs traversent la lame basale (lamina basale) où ils se connectent aux neurones du nerfs optique au niveau du lobe optique.

La marge interne des photorécepteurs est composée de (suite…)

Menacés, les coléoptères bombardiers pulvérisent de leur abdomen un liquide défensif irritant par une succession de jets très rapides. Ce phénomène prend naissance dans les glandes pygidiales, où deux réactifs se mélangent, provoquant une explosion sous forte pression et la libération de ce liquide. Les mécanismes internes et anatomiques permettant cette prouesse viennent d’être décrits par l’équipe américaine d’Eric M. Arndt du Massachusetts Institute of Technology (MIT). Le contrôle des jets se fait par un mécanisme de rétroaction passif autonome ne nécessitant pas de voie nerveuse et musculaire.

Les coléoptères bombardiers appartiennent à la famille des carabes (Carabidae) et à la tribu des Barchinini (figure 1A). Ces insectes ont la faculté d’expulser un liquide défensif sous pression par des jets successifs afin d’en pulvériser sur ce qui les menace, un prédateur par exemple (voir video en fin d’article). Ce liquide défensif, issu des glandes pygidiales, est composé d’un mélange de plusieurs molécules dont les p-benzoquinones : un composé irritant employé par l’ensemble des arthropodes.

Cependant, les bombardiers sont les seuls insectes qui utilisent une réaction chimique interne explosive pour expulser cette molécule. La réaction induit également de la chaleur.

La pulvérisation du liquide est particulièrement impressionnante : une température proche de 100°C, des portées de plusieurs centimètres, une vitesse avoisinant les 10m par seconde!

Chez l’espèce Stenaptinus insignis, la fréquence d’émission des jets se situe entre 368Hz et 735Hz, donnant ainsi l’impression d’une pulvérisation unique (fréquence proche du battement des ailes d’un insecte en vol : lire cet article).

Description anatomique du système défensif

Les glandes pygidiales sont composées de trois éléments : 1) la chambre réservoir (RSC), 2) la chambre de réaction (RXC), 3) un canal de sortie (EC) donnant sur l’extrémité de l’abdomen (voir figure 1B). (suite…)

Les insectes sont les seuls invertébrés ayant acquis la capacité de voler (place des insectes dans la classification, lire cet article). Contrairement aux autres animaux volant comme les oiseaux et les chauve-souris, où les ailes sont issues des membres antérieurs, celles des insectes ont une structure et une origine totalement différentes. Leur origine et leur histoire évolutive restent encore confuses et controversées. D’un système simple au début, le fonctionnement des ailes s’est avéré par la suite d’une incroyable complexité!

Origine et évolution

Les premiers insectes ailés fossiles connus sont datés du Paléozoïque (ère primaire : 545-245 millions d’années) et sont tous terrestres. L’acquisition des ailes et du vol a permis une explosion de diversité de familles (Hyménoptères, Lépidoptères, Diptères…), de genres et d’espèces (lire cet article). L’avantage évolutif procuré fut gigantesque : meilleure dispersion (recherche de nourriture, d’environnements favorables…etc.), capacité à fuir les prédateurs, meilleure stratégie reproductive. Cet avantage fut tel qu’aujourd’hui, les insectes ailés ou « Ptérygotes » constituent la quasi-totalité des espèces d’insectes. Les insectes non ailés dits « Aptérygotes » ne représentent, eux, qu’une faible minorité des espèces.

Deux théories ont été proposées pour expliquer l’origine des ailes des insectes.

  • La première, plus traditionnelle et supportée par des évidences expérimentales et des modélisations théoriques, suggère que la sélection naturelle aurait agi sur des insectes arboricoles (« Protoptérygotes« ), munis d’excroissances sur le thorax et effectuant du vol plané, en favorisant l’élargissement de ces organes et en mettant en place les innovations techniques et biologiques pour battre des ailes (certaines espèces de fourmis contrôlent leur chute avec leurs pattes : ici).
  • Selon les tenants de la seconde, le vol serait issu d’insectes semiaquatiques utilisant des excroissances thoraciques pour écumer l’eau, à la manière des larves d’Ephéméroptères et de Plécoptères : la sélection naturelle leur aurait permis de quitter le milieu aquatique pour celui des airs.
Description des différentes éléments d'une patte de crustacé (crustacea.academic)

Différentes éléments d’une patte de crustacé (Source : crustacea.academic)

Ces dernières décennies, la paléo-entomologiste tchèque Jarmila Kukalova-Peck a présenté une nouvelle théorie. Selon elle, chez les arthropodes comme les crustacés, les pattes sont ramifiés (« biramés »), avec un appendice dorsal ou externe (exopodite) et un appendice ventral ou interne (endopodite), une anatomie qui n’est pas retrouvée chez les insectes où les pattes ne sont constituées que d’un appendice (voir illustration). L’idée est que les ailes seraient issues d’exopodites modifiées (2ème et 3ème paires), tandis que la première paire aurait été perdue ou incorporée au thorax.

Cette théorie a l’avantage d’expliquer, contrairement aux deux autres, de la mise en place d’une (suite…)