Tagged: biology

Lac Mono (Source : F. van Breugel)

L’été, les rives du lac Mono en Californie sont envahies pas des millions de petites mouches. La densité est telle qu’elle atteint parfois par endroit plus de 2000 mouches sur la surface d’une carte postale, pour une population totale estimée à plus de 100 milliards d’individus. Ces mouches appartiennent à une espèce : Ephydra hians (Ephydridae). Les adultes sont connus pour leur mode de vie et leur comportement subaquatique des plus surprenants et singuliers : ils ont en effet la capacité à s’immerger complètement sous l’eau à la fois pour se nourrir et pour pondre leurs oeufs.

Les premières observations et descriptions des moeurs de cet insecte remontent à 150 ans et ont été faites par l’écrivain Mark Twain (1835-1910) sous ces mots : « vous pouvez les maintenir sous l’eau aussi longtemps que vous le souhaitez – sans que cela les dérange – elles sont seulement fières d’elles. Quand vous les laissez partir, elles remontent entièrement sèches à la surface, et marchant avec autant d’insouciance que si elles avaient été éduquées dans le but d’offrir un divertissement instructif à l’homme« .

Biologie et écologie de Hephydra hians

Ephydra hians est une de 4 à 7mm, de couleur marron foncé avec des reflets verts métalliques sur le thorax. L’espèce à la particularité de se développer dans des eaux à forte salinité, expliquant son nom de mouche alcaline. L’eau du lac Mono possède en effet une teneur en sel trois fois supérieure à celle de l’Océan Pacifique, avec une forte concentration en bicarbonate de sodium (NA2CO3), qui lui confère une alcalinité particulière (pH=10). Cette salinité résulte du non renouvellement de l’eau depuis 60 000 ans et d’une évaporation régulière et constante. Le calcium (CaCO3) qui l’accompagne provient quand à lui de sources naturelles.

Hormis E. hians, seuls des algues, des bactéries et des crevettes halophiles tolèrent cet environnement. Les mouches adultes, vivant entre 3 et 5 jours, peuvent ainsi s’alimenter d’algues et pondre sans craindre la concurrence ou la prédation. Le rôle écologique de ce lac est très important dans cette région car il offre une ressource alimentaire à près de 2 millions d’oiseaux migrateurs qui y font halte chaque année (par exemple, 85% de la population de goéland de Californie rejoignent le lac pour nicher) (voir vidéo en bas de page).

Ephydra hians dans sa bulle d’air (Source : F. van Breugel)

Il est primordial pour ces mouches de demeurer sèche pour leur survie. Le fait d’être mouillées engendrerait le dépôt d’une fine couche de minéraux sur leur cuticule (squelette externe des insectes), augmentant par conséquent la probabilité d’être à nouveau mouillées lors d’un prochain contact avec l’eau. Pour se protéger de l’élément liquide nocif lors de la plongée, les mouches s’entourent d’une bulle d’air protectrice englobant à la fois le corps et les ailes. Cette boule leur permet ainsi de se protéger des sels et des composants alcalins et d’apporter l’oxygène tel un poumon externe (photo ci-contre). Grâce à ce scaphandre, la mouche peut rester immergée près de 15mn à des profondeurs de 4 à 8m. Pour rejoindre la surface, elle lâche prise et se laisse tout simplement porter où elle va pouvoir flotter, marcher sur l’eau ou encore s’envoler (voir vidéo ci-dessous).

Or, depuis 150 ans, la formation de cette bulle d’air et la capacité de Ephydra hians à s’immerger dans ces eaux aussi alcalines sont demeurées un mystère pour la science. C’est pourquoi, deux scientifiques du département de Biologie de l’Institut Technique de Californie (ITC), Floris van Breugel et Michael Dickinson ont mené des études les propriétés physico-chimiques uniques de la cuticule de ces mouches à l’origine de la formation de la bulle d’air (en partie financées par le National Geographic Society).

Adaptation à la plongée 

La cuticule des mouches de la famille des Ephydridae est recouverte par de nombreux poils minuscules (setae) et par des cires (hydrocarbures).

Ephydra hians dans sa bulle d’air (Source : F. van Breugel)

Pour mieux comprendre les phénomènes physico-chimiques à l’origine du pouvoir hydrophobique des poils, les scientifiques ont d’abord observé au microscope l’aspect et la répartition des poils à la surface de la cuticule. Ils ont constaté que ces mouches possédaient un tapis de poils plus denses de 36% sur leur corps et leurs pattes que d’autres espèces de mouches apparentés (34% sur les ailes, 44% sur le thorax, 47% sur l’abdomen) (voir photo ci-contre).

Puis, pour mesurer les forces de tension à la surface de l’eau et de la cuticule de ces insectes, ils ont construit un capteur minuscule et plongé des centaines d’individus de E. hians, et de 6 autres espèces apparentées, dans une série de solution salines différentes en en faisant varier la salinité, le pH et la densité. La formation de la bulle d’air à la surface de la cuticule a pu être observée à l’aide de caméras à (suite…)

Hypocephalus armatus est un gros Coléoptère d’Amérique du sud : d’une morphologie unique parmi les longicornes (longues antennes), sa biologie et son écologie demeurent un mystère et il reste, depuis sa découverte, une curiosité entomologique.

I) Biogéographie

Carte 1 : Carte du Brésil et de l'état de Minas Gerais (Source Google Map)

Carte 1 : Carte du Brésil et de l’état de Minas Gerais (Source Google Map)

L’aire de répartition d’Hypocephalus armatus est limitée à une petite zone de l’est du Brésil, principalement dans l’état de Minas Gerais, au nord de Rio de Janeiro (voir carte 1 ci-contre).

II) Taxonomie

Décrit en 1832 par le zoologiste français Eugène Desmaret (1816-1889), Hypocephalus armatus a vu sa position systématique évoluer régulièrement. En raison d’une morphologie singulière parmi les Coléoptères (voir paragraphe suivant), les entomologistes, ne sachant pas dans quelle famille placer l’espèce, l’ont transférée d’un taxon (définition) à un autre de nombreuses fois. L’entomologiste américain John Lawrence LeConte (1825-1883), reconnu mondialement pour avoir décrit des milliers d’insectes durant sa carrière, a dit en 1876 : « parmi tous les Coléoptères connu de la science, aucune espèce n’a provoqué autant d’incertitude quant à sa position systématique » (The Book of the Beetle – p516).

Hypocephalus armatus est actuellement intégré à la famille des Vesperidae qui comprend 17 genres et 80 espèces. Cette famille est subdivisée en 3 sous-familles : (suite…)

Les espèces de fourmis dites « champignonnistes » ou « coupe-feuilles » appartiennent principalement aux genres Atta et Acromyrmex (famille des Formicidae et sous-famille des Myrmicinae).

Les espèces de ceux deux genres ont pour particularité de s’alimenter d’un champignon (Basidiomycète de la famille des Lepiotaceae) qu’elles cultivent sur un substrat de matière végétale. Pour entretenir ce substrat, les fourmis collectent des morceaux de feuilles ou de fleurs, dans la forêt, puis les transportent ensuite jusqu’à la fourmilière.

I) Biogéographie des fourmis du genre Atta

Le genre Atta, constitué de 15 espèces, se rencontre essentiellement dans les habitats humides néotropicaux (forêts savanes) du Nouveau-Monde (Amérique centrale et du sud). Certaines espèces se sont toutefois adaptées à des climats et des environnements moins favorables, comme A. mexicana rencontrée dans les déserts du Mexique et du sud de l’Arizona et A. texana qui s’observe uniquement dans les régions semi-tempérées du Texas et de la Louisiane.

Les espèces A. cephalotes et A. sexdens sont à la fois les plus connues et celles ayant la plus vaste aire de répartition. Elles se développent dans une grande diversité d’habitats, des forêts tropicales aux régions dégradées par les activités anthropiques de l’Amérique centrale jusqu’au sud du continent.

Deux espèces que j’ai eu la chance d’observer durant mes missions de recherche au Panama et en Guyane française. Pour en savoir plus, lire ces articles : Smithsonian Tropical Research Institute et Station des Nouragues.

II) Organisation sociale

Les fourmis Atta présentent l’un des plus haut degré de complexité d’organisation sociale observé chez les insectes.

L’organisation de la colonie est basée, comme chez la plupart des fourmis, sur le modèle d’une reine (seul individu ayant la capacité de pondre) et de (suite…)

Les insectes et les végétaux entretiennent des relations d’interdépendance depuis l’apparition des plantes à fleurs au Crétacé (145-65 millions d’années) (lire cet article). Cette co-évolution entre plantes à fleurs et les insectes est à l’origine de la diversité des interactions inter-spécifiques, des espèces et des cycles biologiques.

Parmi ces relations, certaines sont favorables aux deux protagonistes (la plante et l’insecte) : ce type d’interactions à bénéfices réciproques constitue  mutualisme. L’insecte se développe, s’alimente, effectue son cycle reproductif en totalité ou en partie via l’organisme végétal, et en contrepartie, la plante est pollinisée et fécondée. L’insecte joue alors le rôle de transporteur des grains de pollen d’une fleurs à l’autre, contribuant ainsi au maintien de la diversité génétique de l’espèce végétale.

Parfois, deux espèces peuvent avoir évolué de manière à ne pouvoir vivre l’une sans l’autre: elles deviennent totalement dépendante. Un exemple de mutualisme parmi les plus remarquables est probablement celui des guêpes de la famille des Agaonidae (Chalcidiens-Hyménoptères) et des figuiers. C’est cette association étonnante que vous découvrirez dans ces lignes.

 La figue :
Coupe transversale d'une figue (Source : Wikipedia)

Coupe transversale d’une figue (Source : Wikipedia)

Contrairement à ce que l’on peut croire, la figue n’est pas un fruit!! Il s’agit en fait d’un réceptacle floral refermé sur lui-même, enfermant les fleurs femelles et les fleurs mâles. La figue forme ainsi une urne (Syconium), dont l’ouverture située au sommet (ostiole) est fermée par des bractées (des sortes de feuilles à la base du pédoncule florale). La moitié environ des espèces sont dites monoïques (une figue porte des fleurs mâles et femelles), les autres étant dioïques (les fleurs mâles et femelles sont portées par des arbres différents).

Dans le monde, plus de 800 espèces de figuiers, regroupées en 20 genres, sont recensées, dont la grande majorité se rencontre dans les forêts tropicales : le genre Ficus regroupe le plus grand nombre d’espèce.

La figue, impropre chimiquement à un grand nombre de phytophages (animaux se nourrissent de matière végétale) jusqu’à sa maturation, offre également un environnement intérieur protecteur pour tout insecte ayant la possibilité de s’y installer. C’est ainsi, qu’au cours de l’évolution, de nombreuses espèces d’insectes (Diptères, Coléoptères, Hyménoptères) ont réussi à en tirer avantage à l’aide d’innovations et d’adaptations morphologiques. Mais les guêpes Agaonides vont plus loin : (suite…)

La question qui vient lorsque l’on parle d’Entomologie et d’insectes, est « Qu’est qu’un insecte?« .

Toutes les petites bêtes qui vivent autour de nous ne sont pas des insectes! Beaucoup de gens, avec qui je parle de ma passion, intègrent les araignées et les scorpions dans les insectes. C’est pourquoi, j’ai souhaité débuter ce blog en donnant une définition d’un insecte et une description qui permettra de les identifier.

Classification & Morphologie

Le mot insecte vient du latin « Insectum » qui veut dire « coupé en sections« . Les insectes font partis des Invertébrés et des Arthropodes. Les Arthropodes sont des animaux constitués :

  1. d’un squelette externe (exosquelette), segmenté et articulé, en chitine (formés de plaques appelées sclérites), c’est pour cette raison qu’ils sont nommés Invertébrés, à l’opposé des vertébrés qui possèdent un squelette interne comme les poissons, les oiseaux ou encore les mammifères. Chez les insectes, cette exosquelette est appelé Cuticule.
  2. d’une symétrie bilatérale (symétrie droite/gauche),
  3. d’un système nerveux central ventral, contrairement aux vertébrés qui possèdent un système nerveux central dorsal (colonne vertébrale),
  4. d’un système « cardiaque » en position dorsal,
Arbre phylogénétique des Arthropodes (Source : Giribet & Edgecombe, 2012)

Arbre phylogénétique des Arthropodes (Source : Giribet & Edgecombe, 2012)

Le groupe des Invertébrés, en plus des Arthropodes, est composé de l’Ordre des Mollusques (moules, poulpe…), des Crustacés (crabes, crevettes…), des Arachnides (araignées, scorpions, mille-pattes…), des Echinodermes (oursins, étoiles de mer…), entre autre (voir illustration).

Un insecte est défini et caractérisé morphologiquement par un corps constitué de (voir illustration) :

  1. 3 parties principales : têtethoraxabdomen
  2. 3 paires de pattes (antérieures, médianes et postérieures)
  3. d’yeux composés (ou ommatidies)
  4. d’une paire d’antennes sur la tête
Schéma de la morphologie type d'un insecte (Source : University of Missouri)

Schéma de la morphologie type d’un insecte (Source : University of Missouri)

Description rapide

Apparu sur Terre il y a environ 420 millions d’années, les insectes ont évolué dans une infinie diversité de (suite…)

Les papillons du genre Heliconius

Les Heliconius sont des papillons que l’on rencontre dans les forêts tropicales d’Amérique centrale et sud. Ils sont notamment connus et étudiés par la science pour leur capacité à se mimer entre eux et à s’adapter rapidement aux changements de couleur et de comportement. Au sein de chaque espèce existe des populations qui présentent des pattern de coloration différents, semblables à d’autres populations d’espèces différentes situées dans la même localité géographique.

Ce processus de mimétisme prend origine dans une structure particulière de leur génome et sur le principe Müllérien qui consiste à ressembler à des espèces toxiques pour échapper aux prédateurs qui apprennent à ne pas consommer une certaine coloration.

Une thématique sur laquelle j’ai eu la chance de travailler au Muséum National d’Histoire Naturelle de Paris : ici. Pour en savoir davantage sur les mécanismes génétique, je vous invite à lire cet article sur l’histoire évolutive de l’origine de la coloration de ces papillons.

En plus de ces particularités, les papillons Heliconius sont intéressants à d’autres points de vue.

Dans leur comportement alimentaire :

Contrairement aux autres papillons qui se nourrissent de nectar floraux, les Heliconius ont la particularité de s’alimenter de pollen. Grâce à leur proboscis (= la trompe), les

H. hecale melicerta se nourrissant de pollen récoltés sur son proboscis (trompe) - Photo de B. GILLES

H. hecale melicerta se nourrissant de pollen récoltés sur son proboscis (trompe) – Photo de B. GILLES

papillons collectent les grains de pollen qui s’y agrègent pour former une pelote (voir photo et vidéo ci-contre). Ensuite, par des actions mécaniques des mandibules et de sécrétions digestives (salive), le pollen est dégradé, absorbé et digéré.

Ce mode alimentaire est unique chez les papillons.

(suite…)