Tagged: histoire évolutive

Des gènes à l’origine de traits nouveaux donnant accès à un nouvel environnement

chez la punaise Rhagovelia (Heteroptera, Gerromorpha, Veliidae)

Les innovations évolutives se traduisent par l’apparition de nouvelles structures ou comportements au cours de l’évolution (ex : la fleur, la carapace des tortues, l’aile des insectes (lien), un patron de coloration chez les papillons (lien)). La théorie prédit que ces événements d’apparition sont uniques à chaque innovation et rares. C’est ainsi que les innovations sont partagées par des groupes d’espèces apparentées, des taxons (ex : respectivement, les angiospermes, les oiseaux, les tortues, les insectes, les papillons). L’apparition de nouvelles structures est le premier mécanisme par lequel les innovations participent à la diversification du vivant.

Une innovation est considérée comme clé, importante, lorsqu’elle permet l’adaptation à une nouvelle niche écologique via une nouvelle fonction. La théorie prédit que l’opportunité écologique ainsi créée va permettre la diversification de l’espèce possédant l’innovation en groupe d’espèces.  C’est le deuxième mécanisme par lequel les innovations participent à la diversification du vivant. Ainsi, elles façonnent les trajectoires évolutives des lignées dans lesquelles elles apparaissent.

L’importance de certaines de ces innovations pousse les chercheurs à se demander quels sont les mécanismes génétiques et développementaux à leur origine. Ils cherchent à faire le lien entre les changement génétiques, phénotypiques et adaptatifs à un nouveau milieu.

Punaises du genre Rhagovelia à la surface de l’eau (Source : A. Khila, 2017)

Pour tenter de répondre à ces questions, l’équipe de Khila Abderrahman (CNRS-UMR5242, Université de Lyon) a étudié les mécanismes génétiques et les pressions environnementales qui sous-tendent l’évolution de « l’éventail propulseur » (photo 2 ci-dessous), structure exclusive des punaises du genre Rhagovelia (Heteroptera, Gerromorphe, Veliidae) qui leur permet de se propulser à la surface de l’eau.

Leurs résultats mettent en évidence le rôle central de gènes qui sont spécifiques au taxon. L’un d’eux n’est présent que chez les punaises d’eau et l’autre que dans le groupe qui possède l’éventail (le genre Rhagovelia). Ces deux gènes sont impliqués dans le développement de l’éventail. De plus, l’utilisation de tests biomécaniques a prouvé le rôle essentiel de l’éventail dans l’adaptation à un nouvel environnement, agissant ainsi comme une innovation déterminante au plan évolutif.

Biologie et description des Rhagovelia

Le genre Rhagovelia (photo 1 ci-dessous) est constitué de ∼200 espèces dont le cycle biologique se déroule, en général, à la surface de petits courants d’eau rapides – niche écologique pas ou peu accessible à la plupart des autres insectes semi-aquatiques -. Ces punaises aquatiques se déplacent à la surface par des mouvements d’aviron de la paire de pattes médianes où se situent les éventails. Un éventail se compose d’environ 20 branches (ou fanes) primaires chacune, dotée de branches secondaires plus minces (photo 2 ci-contre). Contrairement à Rhagovelia, le genre Stridulivelia, qui lui est étroitement apparenté, ne possède pas d’éventail de propulsion. Bien que les espèces des deux genres occupent les mêmes cours d’eau (espèces sympatriques), les punaises du genre Stridulivelia restent statiques sur les feuilles des plantes et n’effectuant qu’occasionnellement des déplacements rapides (voir vidéo 1).

Photo 1 : Rhagovelia antilleana – les éventails sont visibles sur les pattes médianes (Source : Sciencesnews.org)

Photo 2 : éventail propulseur chez Rhagovelia antilleana (Source : Santos et al., 2017) (Modifié par B. gilles)

Le développement embryonnaire de l’éventail débute entre 144 et 210 heures, soit à 35% de la durée totale de l’embryogenèse (à 26°C). Les larves du premier stade éclosent avec des éventails entièrement fonctionnels, renouvelés au cours de chacune de leurs cinq mues, indiquant la persistance du programme de développement du éventail tout au long des stades post-embryonnaires (illustration 1 ci-dessous).

Illustration 1 : Développement de l’éventail au 1er, 3ème et 5ème stade larvaire – augmentation de la taille et du nombre des branches (Source : Santos et al., 2017)

Analyses génétiques

Pour identifier les gènes à l’origine du développement de l’éventail, l’équipe de scientifiques a réalisé un profilage transcriptomique (étude de l’ensemble des ARN messager produits lors du processus de transcription d’un génome) des pattes embryonnaires chez Rhagovelia antilleana. L’étude de l’expression de ces ARNm a permis d’identifier 5 gènes s’exprimant uniquement dans la paire de pattes médianes et à l’endroit où se développe l’éventail : y (yellow), cp19 (cuticular protéine 19), ccdc174 (coiled-coil domain-containing protéine 174) et deux gènes similaires inconnus (c67063_g1 et c68581_g1, respectivement nommé geisha et mother-of-geisha) (illustration 2 ci-dessous). Aucun de ces gènes ne s’exprime dans les pattes antérieures et postérieures de R. antilleana ou de toute autre espèce apparentée comme Stridulivelia tersa et Oiovelia cunucunumana.

Illustration 2 : Expression des 5 gènes à l’apex de la patte médiane de Rhagovelia (Source : Santos et al., 2017)

Une recherche d’homologie des séquences liées à geisha et mother-of-geisha a montré que mother-of-geisha possédait un paralogue (gène homologue) retrouvé chez 5 espèces d’Hémiptères (punaises) et une d’Isoptères (termites). Aucun de ces deux gènes ne possède d’homologue dans d’autres Ordres comme les Lépidoptères, les Diptères et les Hyménoptères. Le gène mother-of-geisha possède cependant de proches homologues dans les espèces de punaise d’eau n’ayant pas d’éventail (i.e. autres que Rhagovelia) alors que toutes les espèces de Rhagovelia et seulement celles-ci partagent le gène geisha Les chercheurs concluent que mother-of-geisha a émergé chez une espèce ancestrale commune à tous les Hémiptères et s’est ensuite dupliqué chez l’ancêtre commun du clade des Rhagovelia pour donner geisha. Dans cet ancêtre commun, la séquence de geisha a évolué très rapidement et a divergé de celle de mother-of-geisha (illustration 3 ci-dessous). C’est ainsi que les gènes ont (suite…)

La découverte d’une nouvelle famille de lépidoptère, inédite depuis les années 1970, a été faite avec la capture d’un petit papillon sur « Kangaroo Island » (Australie). Une équipe australienne, menée par N.P. Kristensen, vient de décrire la famille des Aenigmatineidae. Des études morphologiques et génétiques sur ces spécimens permettent de reconsidérer une grande partie de l’histoire évolutive et de la classification des lépidoptères. L’évolution de ces insectes semble plus complexe que les scientifiques pouvaient le penser auparavant.

Les papillons (Lepidoptera) actuels appartiennent quasi-uniquement (99%) au phylum (groupe) des Hétéroneures : nervation des ailes antérieures et postérieures différentes et associées durant le vol. A l’opposé, les Homoneures possèdent des ailes antérieures et postérieures aux nervures identiques : un caractère primitif considéré comme ancestral.

Les papillons sont regroupés en deux catégories :

  • Les Glossata dont les pièces buccales sont modifiées en « trompe » (proboscis) ayant la faculté de s’enrouler sur elle-même chez les imagos (lire cet article), qui intègrent l’ensemble des hétéroneures, la famille des Neopseustidae et ainsi que le groupe Exoporia ;
  • Les Aglossata qui gardent des mandibules et des mâchoires fonctionnelles non spécialisées à l’état adulte : un trait anatomique ancestral, qui se retrouve chez les Agathiphagidae, les Micropterigidae et les Heterobathmiidae.
Espèce Aenigmatinae glatzella : (a) mâle, (b) femelle sur sa plante hôte, (c) chenille sur plante hôte

Photo 1 : Espèce Aenigmatinea glatzella : (a) mâle, (b) femelle sur sa plante hôte, (c) chenille sur plante hôte (Source : Kristensen et al. (2015) – Opus cité, p.8)

L’intérêt de cette nouvelle espèce, Aenigmatinea glatzella (voir photo ci-contre), est qu’elle présente à la fois des caractères anatomiques ancestraux comme des ailes homoneures, et « modernes » (qui se retrouvent chez les papillons actuels). Les scientifiques ont entrepris des analyses morphologiques et génétiques pour déterminer la place de sa famille au sein de l’arbre phylogénétique et de la classification des lépidoptères.

Ces résultats montrent que Aegnimatinea glatzella est proche phylogénétiquement des Hétéroneures et des familles Acanthopteroctetidae et Neopseustidae (voir illustration 1 en bas de page). 

Morphologiquement, cette espèce, malgré des pièces buccales atrophiées à l’état adulte, présente des caractéristiques propres aux Glossata comme une absence de commissure tritocérébrale libre (zone de liaison entre le proto-cérébron et le deutéro-cérébron, partie antérieure du cerveau de l’insecte), une cuticule des lentilles des ocelles (oeil simple) épaissie et la structure du premier spirale thoracique.

De plus, les chenilles de A. glatzella ont la particularité de (suite…)

L’équipe internationale dirigée par le Professeur suisse Peter Nagel et le doctorant Thomas Hertach viennent de publier dans la revue « Zoological Journal of the Linnean Society » une nouvelle classification  des cigales de montagne de Suisse et d’Italie. Auparavant, l’ensemble des populations de cigale de ces régions étaient regroupées en une seule espèce : Cicadetta montana (Scopoli, 1772). Or, des études morphologiques, acoustiques et génétiques ont révélé l’existence d’une nouvelle espèce : Cicadetta sibillae, qui fait partie d’un complexe de 10 espèces issues d’une seule espèce ancestrale du Pléistocène.

Figure 1 : Coupe transversale du thorax d'une cigale : description des timbales

Figure 1 : Coupe transversale du thorax d’une cigale : description des timbales (Source : Encyclopedia of Insects – 2009 – Modifié par B. GILLES)

Les cigales, de la famille des Cicadidae (Hemiptera), sont des insectes qui présentent peu de variations morphologiques, la distinction entre les différentes espèces se base essentiellement sur la nature de leur chant. Le mâle de chaque espèce émet un son spécifique en rythme, en fréquence et en intensité qui leur permet d’attirer le bon partenaire sexuel. Le son est produit par la contraction de muscles thoraciques faisant vibrer un organe : la timbale (voir figure 1 et vidéo en bas de page).

Les scientifiques de cette étude, le suisse Peter Nagel de l’Université de Bâle en Suisse, le doctorant Thomas Hertach et leurs collègues de Slovénie et des Etat-Unis, ont donc entrepris de caractériser sept populations différentes de Suisse et d’Italie sur des critères morphologiques, acoustiques et génétiques. Leurs résultats indiquent (suite…)

Une équipe internationale de chercheurs vient d’établir une nouvelle phylogénie* des insectes qui permet de retracer l’histoire évolutive des différentes familles à l’aide d’outils moléculaires et génétiques, et d’analyses comparatives entre de milliers de gènes et de séquences nucléotidiques* (* définition en fin de page).

Photo et illustration du plus vieux fossile d'insecte (Strudiella devonica)

Photo et illustration du plus vieux fossile d’insecte (Strudiella devonica)

Le plus ancien fossile d’insectes connu est âgé de 412 millions d’années (début de l’ère géologique du Dévonien), ce qui indique que les insectes prennent leur origine bien avant, durant l’Ordovicien (485-440 millions d’années), voir durant le Cambrien (540-485 millions d’années). Le manque de fossiles durant ces deux périodes empêche de concevoir l’histoire de leur apparition de manière certaine.

Les insectes sont les premiers organismes à s’être adaptés à la vie terrestre et à l’eau douce, ils se sont dès lors diversifiés en de très nombreuses familles comme les papillons (Lépidoptères), les mouches (Diptères), les libellules (Odonates), les Coléoptères, les termites (Isoptères), les criquets (Orthoptères), et bien d’autres. Les insectes ont évolué et se sont adaptés durant ces millions d’années à toute une gamme d’environnement et de modifications climatiques, et ont aussi développé le vol et la vie en société.

Pour ceux qui se posent la question : « Qu’est ce qu’un insecte? », suivre ce lien.

C’est pourquoi, il est très intéressant de déterminer les

(suite…)