Tagged: mouches

Lac Mono (Source : F. van Breugel)

L’été, les rives du lac Mono en Californie sont envahies pas des millions de petites mouches. La densité est telle qu’elle atteint parfois par endroit plus de 2000 mouches sur la surface d’une carte postale, pour une population totale estimée à plus de 100 milliards d’individus. Ces mouches appartiennent à une espèce : Ephydra hians (Ephydridae). Les adultes sont connus pour leur mode de vie et leur comportement subaquatique des plus surprenants et singuliers : ils ont en effet la capacité à s’immerger complètement sous l’eau à la fois pour se nourrir et pour pondre leurs oeufs.

Les premières observations et descriptions des moeurs de cet insecte remontent à 150 ans et ont été faites par l’écrivain Mark Twain (1835-1910) sous ces mots : « vous pouvez les maintenir sous l’eau aussi longtemps que vous le souhaitez – sans que cela les dérange – elles sont seulement fières d’elles. Quand vous les laissez partir, elles remontent entièrement sèches à la surface, et marchant avec autant d’insouciance que si elles avaient été éduquées dans le but d’offrir un divertissement instructif à l’homme« .

Biologie et écologie de Hephydra hians

Ephydra hians est une de 4 à 7mm, de couleur marron foncé avec des reflets verts métalliques sur le thorax. L’espèce à la particularité de se développer dans des eaux à forte salinité, expliquant son nom de mouche alcaline. L’eau du lac Mono possède en effet une teneur en sel trois fois supérieure à celle de l’Océan Pacifique, avec une forte concentration en bicarbonate de sodium (NA2CO3), qui lui confère une alcalinité particulière (pH=10). Cette salinité résulte du non renouvellement de l’eau depuis 60 000 ans et d’une évaporation régulière et constante. Le calcium (CaCO3) qui l’accompagne provient quand à lui de sources naturelles.

Hormis E. hians, seuls des algues, des bactéries et des crevettes halophiles tolèrent cet environnement. Les mouches adultes, vivant entre 3 et 5 jours, peuvent ainsi s’alimenter d’algues et pondre sans craindre la concurrence ou la prédation. Le rôle écologique de ce lac est très important dans cette région car il offre une ressource alimentaire à près de 2 millions d’oiseaux migrateurs qui y font halte chaque année (par exemple, 85% de la population de goéland de Californie rejoignent le lac pour nicher) (voir vidéo en bas de page).

Ephydra hians dans sa bulle d’air (Source : F. van Breugel)

Il est primordial pour ces mouches de demeurer sèche pour leur survie. Le fait d’être mouillées engendrerait le dépôt d’une fine couche de minéraux sur leur cuticule (squelette externe des insectes), augmentant par conséquent la probabilité d’être à nouveau mouillées lors d’un prochain contact avec l’eau. Pour se protéger de l’élément liquide nocif lors de la plongée, les mouches s’entourent d’une bulle d’air protectrice englobant à la fois le corps et les ailes. Cette boule leur permet ainsi de se protéger des sels et des composants alcalins et d’apporter l’oxygène tel un poumon externe (photo ci-contre). Grâce à ce scaphandre, la mouche peut rester immergée près de 15mn à des profondeurs de 4 à 8m. Pour rejoindre la surface, elle lâche prise et se laisse tout simplement porter où elle va pouvoir flotter, marcher sur l’eau ou encore s’envoler (voir vidéo ci-dessous).

Or, depuis 150 ans, la formation de cette bulle d’air et la capacité de Ephydra hians à s’immerger dans ces eaux aussi alcalines sont demeurées un mystère pour la science. C’est pourquoi, deux scientifiques du département de Biologie de l’Institut Technique de Californie (ITC), Floris van Breugel et Michael Dickinson ont mené des études les propriétés physico-chimiques uniques de la cuticule de ces mouches à l’origine de la formation de la bulle d’air (en partie financées par le National Geographic Society).

Adaptation à la plongée 

La cuticule des mouches de la famille des Ephydridae est recouverte par de nombreux poils minuscules (setae) et par des cires (hydrocarbures).

Ephydra hians dans sa bulle d’air (Source : F. van Breugel)

Pour mieux comprendre les phénomènes physico-chimiques à l’origine du pouvoir hydrophobique des poils, les scientifiques ont d’abord observé au microscope l’aspect et la répartition des poils à la surface de la cuticule. Ils ont constaté que ces mouches possédaient un tapis de poils plus denses de 36% sur leur corps et leurs pattes que d’autres espèces de mouches apparentés (34% sur les ailes, 44% sur le thorax, 47% sur l’abdomen) (voir photo ci-contre).

Puis, pour mesurer les forces de tension à la surface de l’eau et de la cuticule de ces insectes, ils ont construit un capteur minuscule et plongé des centaines d’individus de E. hians, et de 6 autres espèces apparentées, dans une série de solution salines différentes en en faisant varier la salinité, le pH et la densité. La formation de la bulle d’air à la surface de la cuticule a pu être observée à l’aide de caméras à (suite…)

Le monde des insectes renferme parfois des espèces étonnantes et mystérieuses. Les diptères (« mouches ») Celyphidae en font partie.

Paracelyphus hyacinthus (Source : Anthony KeiC Wong-Flickr)

Paracelyphus hyacinthus (Source : Anthony KeiC Wong-Flickr)

Le nom de cette famille vient du mot grec « κέλυφος » pouvant être traduit par « boîte » ou « coquille » qui caractérise la particularité la plus frappante de ces insectes : celle de ressembler à de petits coléoptères. Tel chez ceux-ci, l’abdomen est recouvert par une structure cuticulaire rigide de protection où se replient les ailes lorsque l’insecte est au repos (voir photo ci-contre et album photos en bas de page).

Cependant, contrairement aux coléoptères, cette structure n’est pas constituée des ailes antérieures mais du scutellum (élément du thorax situé entre les points d’insertion des ailes antérieures).

Il s’agit ici d’un cas de convergence évolutive surprenant.

La fonction de cette adaptation unique chez les diptères demeure inexpliquée. En 1941, l’entomologiste finlandais Richard Hjalmar Frey (1886-1965) a émis deux hypothèses : amélioration de la flottabilité durant le vol ou rôle ornemental. Par manque d’études in natura, le mystère de cet organe hypertrophié reste entier.

Zoogéographie

La famille des Celyphidae, regroupant 90 espèces, se rencontre essentiellement dans les régions orientales, indochinoises et indomalaisiennes. Son aire de répartition, incluant le Pakistan, l’Inde, les Philippines, les îles Ryukyu ou encore Bornéo, est délimitée à l’est par la ligne de Weber, au nord-est par la Chine du sud, l’île de Tsushima dans le détroit de Corée (une espèce) et les îles Salomon (une espèce), au nord-ouest par l’Afghanistan où une espèce a été décrite en 1881 (Celyphus dohrni (Bigot) et dont la présence n’a pu être confirmé depuis) et par l’Ethiopie en Afrique (voir cartographie ci-dessous).

Deux espèces ont été décrites en dehors de cette aire géographique à partir d’un seul spécimen connu : (suite…)

Les mouches de la famille des Diopsidae ont la particularité étonnante d’avoir les yeux positionnés à l’extrémité d’excroissances appelées pédoncules oculaires situés de chaque côté de la tête.

Cette morphologie d’hypercéphalisation et de latéralisation du système visuel se rencontre également chez des vertébrés, où le cas le plus connu est celui du requin marteau, chez des crustacés (crabes, crevettes), chez d’autres insectes comme des Hyménoptères (guêpes, abeilles), des Hétéroptères (punaises) ou encore chez d’autres familles de Diptères (mouches) : Micropezidae, Otitidae, Platystommatidae, Tephritidae, Richardiidae, Perisscelididae et Drosophilidae (voir album photos en bas de page).

La famille des Diopsidae présente toutefois le plus haut degré de complexité de ce processus adaptatif.

I) Ecologie et biologie des Diopsidae
Photo 1 : Diopsidae, espèce non déterminée, Singapore (Source : Nicky Bay - Flickr)

Photo 1 : Diopsidae, espèce non déterminée, Singapore (Source : Nicky Bay – Flickr)

Les Diopsidae regroupent 194 espèces réparties en 14 genres dont l’aire de répartition se concentre quasi-exclusivement sous les tropiques et l’Ancien-monde. En 1997, une espèce a été découverte en Europe : Sphyracephala europaea (voir photo 2).

Ces insectes se rencontrent dans les habitats denses et sombres des forêts tropicales et sub-tropicales, le plus souvent près de la litière. Les adultes s’alimentent de bactéries à la surface de feuilles mortes ou d’animaux morts et les larves, quant à elles, se nourrissent de débris végétaux.

Photo 1 : Sphyracephala europaea (Source : Nikola Rahmé - Flickr)

Photo 2 : Sphyracephala europaea (Source : Nikola Rahmé – Flickr)

Ces insectes mesurent en moyenne 10 mm de longueur. Certaines de ces espèces, comme Cyrtodiopsis whitei, ont une longueur d’écartement de leurs yeux supérieure à celle de leur corps ! (voir photos 1 et 3).

Des espèces sont dites monomorphiques (mâles et femelles possèdent des pédoncules oculaires de même longueur) et d’autres dimorphiques (les mâles ont des pédoncules oculaires plus longs que ceux des femelles). Ce dimorphisme sexuel se retrouve chez des genres et des espèces non apparentés, ce qui suggère que ce caractère morphologique serait apparu plusieurs fois indépendamment au cours de l’évolution.

Les espèces dimorphiques vivent en majorité dans la (suite…)

Les insectes possèdent des capacités de vol allant bien au-delà de ce que peuvent produire les ingénieurs en robotique. Toutefois, le contrôle des manoeuvres et de la posture durant le vol reste à ce jour lacunaire.

Chez les mouches (Diptères), des organes spécialisés : les haltères (ailes postérieures modifiées), apportent des renseignements sur la position du corps (rotation) dans l’espace en jouant un rôle de gyroscope (force de Coriolis) (lire les articles sur le vol des insectes : anatomie et aérodynamique).

Les forces de torsion s’exerçant sur les haltères sont détectées par des mécanorécepteurs : les sensilles campaniformes (pour en savoir cet l’article).

Ne possédant pas d’haltères, les autres familles d’insectes utilisent d’autres structures pour prendre en compte de paramètre : c’est ce qu’a souhaité découvrir l’équipe mené par A.L. Eberle de l’Université de Washington (Etats-Unis).

Pour cela, les scientifiques ont reproduit une aile artificielle en plastique de papillon : celle de Manduca sexta, qu’ils ont fixé à un axe et fait battre à une fréquence de 25Hz.

Schéma de l'aile artificielle et les différents axes de rotation (source :

Schéma de l’aile artificielle et les différents axes de rotation (Source : Eberle et al. – Journal of the Royal Society (2015))

A l’aide de modèles informatiques et de robotique, ils ont observé et comparé les dynamiques structurelles tridimensionnelles : les déformations et les forces de torsion, subies par l’aile pour différentes orientations de son axe (voir schéma ci-contre).

L’équipe a mis en évidence l’existence de forces de torsion et de flexion s’exprimant à la base de l’aile lors de modifications de son axe. Les nombreuses sensilles campaniformes de la base de l’aile apportent ainsi des informations gyroscopiques à l’insecte, comme le font les haltères des mouches.  Ces mécanorécepteurs détectent les modifications structurelles de l’aile durant le vol (pression à la surface de la cuticule), renseignent l’insecte sur sa position dans l’espace et lui permettent de contrôler sa stabilité.

La découverte de cette nouvelle fonction des ailes d’insectes permet d’en apprendre davantage sur les mécanismes mis en jeu dans le vol. Cependant, les relations entre la flexibilité de l’aile et le système de contrôle ne sont pas encore bien établies.

Cette étude, soutenue par l’Air Force Office, a pour objectif de transférer ces connaissances à l’élaboration de robots volant miniatures basés sur le vol des insectes (biomimétisme).

Source :

– Eberle A.L. ; Dickerson B.H. ; Reinhall P.G. & Daniel T.L. (2015) : A new twist on gyroscopic sensing : body rotations lead to torsion in flapping, flexing insect wings. Journal of the Royal Society Interface. 12:104 (lien ici)

La mouche des fruits, Drosophila melanogaster, bien qu’étudiée depuis près de 100 ans par des scientifiques du monde entier et de toutes les disciplines, les paramètres permettant le choix du partenaire sexuel par la femelle restent encore peu connus. Une équipe internationale de chercheur vient de mettre en évidence le rôle de la réfraction lumineuse des ailes du mâle dans l’attractivité de la femelle et dans le choix du partenaire sexuel.

Dans la nature, la vision intervient dans une multitude de processus biologiques comme la stratégie de reproduction, le signalement ou les comportements sociaux. La sélection naturelle a permis l’apparition d’une diversité infinie de couleur et de pattern chez les animaux, comme chez les oiseaux et les papillons par exemple. La couleur peut ainsi jouer un rôle dans le camouflage, la défense contre la prédation et le rapprochement entre partenaires sexuels.

Variations de reflets sur ailes de mouche Drosophila melanogaster mâle (Source : Katayama et al., 2014)

Variations de reflets sur ailes de mouche Drosophila melanogaster mâle (Source : Katayama et al., 2014)

Des études récentes ont montré (suite…)

Contexte :

Mes travaux de recherche de fin d’études se sont déroulés en 2008 au sein du Pôle de Protection des Plantes du CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement) de La Réunion.

Depuis la colonisation de l’île par les hommes, et avec le développement important des activités humaines ces dernières décennies, de nombreuses espèces animales et végétales ont été introduites.

Ainsi, plusieurs espèces d’insectes, en l’absence de leurs prédateurs naturels, bénéficient d’un environnement offrant des conditions optimales pour leur multiplication. La multiplication de ces populations entraine d’importants dégâts agricoles (en terme de production et de rentabilité économique) et phytosanitaires.

Epandage intensif de pesticides

Epandage intensif de pesticides

L’utilisation massive de produits chimiques phytosanitaires, bien qu’intensifs, ne s’avèrent d’aucun recours. Il s’agit donc de trouver des méthodes de lutte plus efficaces (« agro-écologique »), moins chers et surtout moins nocives pour l’environnement et les hommes. En effet, ces produits, par leur épandage en grande quantité dans la nature, se retrouvent dans les sols, dans l’ensemble de la chaine trophique et de facto dans la consommation humaine.

Ma mission

Ma mission, novatrice et précurseur, a été de m’intéresser à la lutte de populations de 3 espèces de mouches de la famille des Tephritidae, nuisibles d’une culture typique de La Réunion : le Chouchou (Sechium edule, Cucurbitacées).

(suite…)