Tagged: Pascal Rousse

Dans l’univers des parasitoïdes (lire cet article), l’ovipositeur, également appelé oviscapte (appendice abdominal avec lequel les oeufs sont déposés), a un rôle crucial puisqu’il permet de situer précisément la ponte dans l’espace et dans le temps, ce qui est essentiel quand celle-ci doit s’accorder avec le cycle biologique de l’hôte. Avant d’aborder certaines particularités étonnantes, il faut d’abord en détailler quelque peu la structure. Chez la plupart des insectes holométaboles, l’ovipositeur est une simple excroissance tubulaire autour de l’orifice génital, mais, chez les hyménoptères, il a conservé une structure primitive bien plus complexe, qualifiée de « lépismoïde » : il s’agit en fait de deux paires de valves creuses qui forment l’ovipositeur à proprement parlé, et sont protégées par une troisième paire, le fourreau.

Illustration 1 : Coupe transversale d’un ovipositeur « standard » d’hyménoptère, montrant les deux paires de valves et leur articulation coulissante. En médaillon, photo MEB montrant les cténidies qui tapissent la face interne de l’oviducte et empêchent le reflux de l’oeuf lors de la ponte (Source : simplifié d’après Quicke, 2015*)

La première paire est coaptée en une pièce supérieure unique qui s’emboite dans une deuxième paire formée de deux valves inférieures, le tout formant un tube autour de l’oviducte depuis l’orifice génital (illustration 1 ci-contre). Ces deux paires sont liées par un système mécanique formant une glissière longitudinale : la face inférieure des valves supérieures forme un ergot qui s’insère dans un rail porté par les valves inférieures. Ainsi, les deux paires peuvent coulisser l’une par rapport à l’autre, ce qui joue un rôle capital lors de l’oviposition. En effet, l’ovipositeur lui-même ne contient pas de muscle : le passage de l’oeuf y est assuré à la fois par le frottement relatif des valves creuses et par la contraction des muscles abdominaux. La face interne des valves est par ailleurs dotée de structures en peignes empêchant le reflux de l’oeuf durant la ponte.

Curieusement, certains ovipositeurs ont des formes particulièrement sinueuses (Photo 1 ci-dessous). On s’est longtemps interrogé sur l’utilité d’une semblable géométrie, a priori plus gênante qu’autre chose lorsqu’il s’agit de perforer un substrat. Il est de tout de même plus facile de perforer le sol avec une aiguille qu’avec un ressort… Puis on a réalisé que le mouvement relatif des valves d’un ovipositeur sinueux a ceci d’intéressant qu’il en modifie l’orientation verticale. Ainsi, en jouant sur le frottement des deux valves, la femelle en guide l’extrémité. Vous saisissez l’utilité du dispositif lorsqu’il s’agit d’atteindre un hôte enfoui dans une galerie non rectiligne ? La recherche médicale s’est d’ailleurs empressée de récupérer cette petite merveille naturelle pour faire naviguer les instruments de microchirurgie à l’intérieur des vaisseaux sanguins.

Photo 1 : Habitus de Pristomerus hansoni – Rousse, Villemant & Seyrig. Notez la grande taille de l’ovipositeur et surtout la forme très sinueuse de son extrémité (Source : photo – Rousse / Iziko SA Museums)

La structure de base de l’ovipositeur est donc similaire chez tous les parasitoïdes. Mais cette unité structurelle est associée à une très forte diversité morphologique : la forme et la taille de l’organe varient énormément d’un groupe à l’autre et à l’intérieur même d’un groupe. La raison en est simple : la structure générale de l’ovipositeur est liée à la phylogénie, mais sa forme précise est conditionnée par l’écologie. Autrement dit, les hyménoptères, ayant tous un ancêtre commun, ont hérité d’un ovipositeur de structure analogue, mais ces hyménoptères ayant des exigences écologiques très variables, leur ovipositeur a évolué secondairement afin de s’adapter aux conditions environnementales.

Le premier trait directement lié à l’écologie du parasitoïde et à son hôte est la longueur de l’ovipositeur. Les parasitoïdes d’hôtes exposés en surface auront un ovipositeur extrêmement court, alors qu’il atteint une longueur relative impressionnante chez les parasitoïdes qui doivent fouiller de grandes profondeurs. Cette longueur relative est souvent limitée à environ 1,3 fois la taille de l’insecte, ce qui correspond grosso modo à la taille qu’il doit avoir pour que l’insecte, en extension sur ses pattes antérieures, puisse en ramener la pointe vers l’avant et diriger sa ponte. Cependant, de nombreux parasitoïdes ont développé des (suite…)

Savez-vous ce qu’est un parasitoïde ? Si oui, vous savez aussi à quel point leur cycle biologique est fascinant. Si non, vous le saurez bientôt grâce à cet exemple détaillé.

Un article écrit par le spécialiste Pascal Rousse pour Passion-Entomologie, un grand merci à l’auteur d’avoir accepté de partager sa passion pour ces insectes étonnants. Retrouvez la présentation de l’auteur en milieu d’article.

Commençons par une définition en simplifiant un peu et en suivant les notes pour ceux qui aiment la précision. Un parasitoïde, c’est un insecte (1) dont les stades juvéniles vont se développer sur, ou dans un autre animal appelé hôte (2). A la grande différence des parasites, les parasitoïdes tuent obligatoirement leur hôte pour parachever leur développement. Alors qu’au contraire, si un parasite tel qu’un pou, un ténia ou une douve provoque la mort de son hôte définitif, il meurt avec lui.

L’exemple illustré ici est celui d’un parasitoïde dit « koïnobionte« , un parasitoïde qui maintient son hôte en vie et en manipule la physiologie pour assurer le développement de sa propre descendance. L’hôte n’est tué qu’au moment final du développement du parasitoïde. Dans ce type d’interaction longue, le parasitoïde grignote lentement son hôte de l’intérieur, tout en épargnant sciemment ses organes vitaux et en jouant à cache-cache avec son système immunitaire. Et il ira parfois jusqu’à faire de l’hôte mourant le garde du corps de ses tortionnaires.

Femelle adulte de C. glomerata parasitant une chenille de premier stade de P. brassicae sur une feuille de chou (Source : Hans Smids)

Femelle adulte de C. glomerata parasitant une chenille de premier stade de P. brassicae sur une feuille de chou (Source : Hans Smids)

Commençons par une présentation chronologique des acteurs. Au départ, il y a un chou, Brassica oleracea. Ce chou attise l’appétit d’une chenille, la bien nommée piéride du chou Pieris brassicae. Mais cette piéride est elle-même convoitée par un parasitoïde baptisé Cotesia glomerata (3). La photo ci-contre montre comment une femelle de C. glomerata injecte ses oeufs à l’intérieur du corps d’une chenille de premier stade, à l’aide de l’ovipositeur situé à l’extrémité de son abdomen et qui fonctionne à la façon d’une seringue. A partir de ce moment, la chenille est condamnée. Lentement, mais irrémédiablement condamnée.

La suite est superbement mise en scène dans cette vidéo du National Geographic (voir aussi en bas de page). Les jeunes chenilles ont continué leur propre développement, en dévorant des feuilles du chou et en emmagasinant ainsi des réserves qui seront utiles pour le parasitoïde. Plus tard, au moment d’achever leur développement larvaire, les larves de C. glomerata percent la cuticule de la chenille grâce à leurs mandibules puis effectuent leur nymphose à l’extérieur. Curieusement, la chenille semble à peu près indifférente à cette émergence multiple, alors qu’elle est bien vivante comme en témoigne la suite : non seulement elle tisse un cocon de protection autour des nymphes du parasitoïde, mais de surcroît elle les protège par de violents soubresauts contre de nouveaux arrivant qui semblent intéressés par la scène. Que se passe-t-il ?

Ces nouveaux arrivant sont ce que l’on appelle des (suite…)