Category: Biologie des insectes

Dans l’univers des parasitoïdes (lire cet article), l’ovipositeur, également appelé oviscape, est (appendice abdominal avec lequel les oeufs sont déposés), a un rôle crucial puisqu’il permet de situer précisément la ponte dans l’espace et dans le temps, ce qui est essentiel quand celle-ci doit s’accorder avec le cycle biologique de l’hôte. Avant d’aborder certaines particularités étonnantes, il faut d’abord en détailler quelque peu la structure. Chez la plupart des insectes holométaboles, l’ovipositeur est une simple excroissance tubulaire autour de l’orifice génital, mais, chez les Hyménoptères, il a conservé une structure primitive bien plus complexe, qualifiée de « lépismoïde » : il s’agit en fait de deux paires de valves creuses qui forment l’ovipositeur à proprement parlé, et sont protégées par une troisième paire, le fourreau.

Illustration 1 : Coupe transversale d’un ovipositeur « standard » d’Hyménoptère, montrant les deux paires de valves et leur articulation coulissante. En médaillon, photo MEB montrant les cténidies qui tapissent la face interne de l’oviducte et empêchant le reflux de l’oeuf lors de la ponte (Source : simplifié d’après Quicke, 2015*)

La première paire est coaptée en une pièce supérieure unique qui s’emboite dans une deuxième paire formée de deux valves inférieures, le tout formant un tube autour de l’oviducte depuis l’orifice génital (illustration 1 ci-contre). Ces deux paires sont liées par un système mécanique formant une glissière longitudinale : la face inférieure des valves supérieures forme un ergot qui s’insère dans un rail porté par les valves inférieures. Ainsi, les deux paires peuvent coulisser l’une par rapport à l’autre, ce qui joue un rôle capital lors de l’oviposition. En effet, l’ovipositeur lui-même ne contient pas de muscle : le passage de l’oeuf y est assuré à la fois par le frottement relatif des valves creuses et par la contraction des muscles abdominaux. La face interne des valves est par ailleurs dotée de structures en peignes empêchant le reflux de l’oeuf durant la ponte.

Curieusement, certains ovipositeurs ont des formes particulièrement sinueuses (Photo 1 ci-dessous). On s’est longtemps interrogé sur l’utilité d’une semblable géométrie, a priori plus gênante qu’autre chose lorsqu’il s’agit de perforer un substrat. Il est de tout de même plus facile de perforer le sol avec une aiguille qu’avec un ressort… Puis on a réalisé que le mouvement relatif des valves d’un ovipositeur sinueux a ceci d’intéressant qu’il en modifie l’orientation verticale. Ainsi, en jouant sur le frottement des deux valves, la femelle en guide l’extrémité. Vous saisissez l’utilité du dispositif lorsqu’il s’agit d’atteindre un hôte enfoui dans une galerie non rectiligne ? La recherche médicale s’est d’ailleurs empressée de récupérer cette petite merveille naturelle pour faire naviguer les instruments de microchirurgie à l’intérieur des vaisseaux sanguins.

Photo 1 : Habitus de Pristomerus hansoni – Rousse, Villemant & Seyrig. Notez la grande taille de l’ovipositeur et surtout la forme très sinueuse de son extrémité (Source : photo – Rousse / Iziko SA Museums)

La structure de base de l’ovipositeur est donc similaire chez tous les parasitoïdes. Mais cette unité structurelle est associée à une très forte diversité morphologique : la forme et la taille de l’organe varient énormément d’un groupe à l’autre et à l’intérieur même d’un groupe. La raison en est simple : la structure générale de l’ovipositeur est liée à la phylogénie, mais sa forme précise est conditionnée par l’écologie. Autrement dit, les Hyménoptères, ayant tous un ancêtre commun, ont hérité d’un ovipositeur de structure analogue, mais, ces Hyménoptères ayant des exigences écologiques très variables, leur ovipositeur a évolué secondairement afin de s’adapter aux conditions environnementales.

Le premier trait directement lié à l’écologie du parasitoïde et à son hôte est la longueur de l’ovipositeur. Les parasitoïdes d’hôtes exposés en surface auront un ovipositeur extrêmement court, alors qu’il atteint une longueur relative impressionnante chez les parasitoïdes qui doivent fouiller de grandes profondeurs. Cette longueur relative est souvent limitée à environ 1,3 fois la taille de l’insecte, ce qui correspond grosso modo à la taille qu’il doit avoir pour que l’insecte, en extension sur ses pattes antérieures, puisse en ramener la pointe vers l’avant et diriger sa ponte. Cependant, de nombreux parasitoïdes ont développé des comportements ou des structures anatomiques qui leur permettent de dépasser cette limite. Dans des exemples extrêmes, cet ovipositeur peut ainsi faire plus de dix fois la longueur du corps de l’insecte.

Photo 2 : vues dorsale et latérale d’une femelle Ibalia leucospides avec son gastre en lame de couteau à l’intérieur duquel est enroulé l’ovipositeur (Source : B. Mallet, Le monde des Insectes)

Chez la plupart des parasitoïdes, l’ovipositeur est externe et pointe vers l’arrière à l’extrémité de l’abdomen (appelé également gastre). Lorsque cet ovipositeur est long, l’insecte le traine derrière lui, ce qui peut gêner son mouvement et le pénaliser face aux prédateurs. Certaines espèces à ovipositeur de grande taille ont développé au cours de l’évolution des structures de rangement que l’on imagine facilement plus confortables. Par exemple, chez les Cynipoïdes, aussi appelées « guêpes à galles » (famille des Cynipidae), l’ovipositeur forme une boucle plus ou moins complète à l’intérieur de l’abdomen  (photo 2), et complètement enroulé chez les Orussidae, des parasitoïdes de larves xylophages. Chez les Leucospidae (photo 3) et certains Platygstridae (photo 4), l’ovipositeur est dirigé vers l’avant et rangé sur la face dorsal de l’abdomen au repos.

Photo 3 : Femelle Leucospis dorsigera avec le fourreau de l’ovipositeur reposant sur la face dorsale du gastre et pointant vers l’avant (Source : D. Geystor, Le monde des Insectes)

Dans d’autres cas où l’ovipositeur est particulièrement long, le système consiste à un déploiement facilité par des structures spécifiques. Ainsi, chez les Ichneumonidae du genre Megarhyssa, la partie externe de l’ovipositeur peut atteindre plus de trois fois la longueur du corps. On peut voir sur cette vidéo comment la femelle Megarhyssa atrata procède pour insérer et retirer son ovipositeur dans un tronc dans lequel elle recherche un hôte (voir également les vidéos ci-dessous) . Cette délicate manoeuvre est assurée par la rotation complète des segments apicaux de l’abdomen couplée au déploiement d’une membrane issue de la jonction entre les segments 7 et 8, membrane elle-même associée à des glandes sécrétrices. Grâce à cet ensemble, M. atrata peut atteindre des hôtes enfouis sous 14 cm de bois dur, alors que le corps de l’animal ne mesure que 4 cm !

Photo 4 : Femelle Inostemma boscii avec le premier segment du gastre transformé portant un cornet courbet abritant l’ovipositeur au repos (Source : J. Svabik)

L’extrémité de l’ovipositeur est également un bon indicateur de l’écologie de son propriétaire. Les parasitoïdes ayant pour hôtes des oeufs, immobiles et fragiles, possèdent dans la majeure partie des cas un ovipositeur à l’extrémité effilée, alors qu’un hôte mobile, comme une larve vivante, requiert une extrémité en tête de flèche barbelée afin d’assurer la prise. Plus surprenante encore est la composition chimique de cet ovipositeur. Ainsi, pour les espèces dont les hôtes se trouvent dans un substrat dur comme le bois, l’ovipositeur est alors renforcé par des minéraux métalliques (manganèse ou zinc) qui en assurent la dureté !

Pascal Rousse (Source : Pascal Rousse)

Passion-Entomologie souhaite grandement remercier Pascal Rousse pour sa nouvelle contribution. Pascal est chercheur entomologiste, correspondant du Muséum National d’Histoire Naturelle de Paris (MNHN), versé  dans la taxonomie, l’écologie et la phylogénie des hyménoptères parasitoïdes, en particulier dans le cadre de leur utilisation en lutte biologique, auteur d’une trentaine de publication sur ces sujets, mais avant tout fasciné depuis bien longtemps par la biologie des Ichneumonidae sans que la psychanalyse ait pu trouver une explication rationnelle à cette monomanie !

Retrouver sa précédente contribution ici.

Sources
  • Quicke, D.L.J. (2015) : The Braconid and Ichneumonid parasitoid wasps : biology, systematics, evolution and ecology. John Wiley & Sons, Chichester, UK, 681p (Lien)
Recommandations d’ouvrages sur cette thématique :

– Interactions insectes-plantes (N. Sauvion ; P.A. Calatayud ; D. Thiery & F. Marion-Poll – Editions Quae – 750 pages – 5 septembre 2013)
– La lutte biologique : Application aux arthropodes ravageurs et aux adventices 
(Bernard Pintureau – Editions : Ellipses Marketing – 188 pages – 25 avril 2009)

– La lutte biologique au jardin (Vincent Albouy – Editions : Quae Editions – 102 pages – 10 mars 2012)

– Insect-Plant Biology (Louis M. Schoonhoven, Joop J.A. van Loon & Marcel Dick – Editions : OUP Oxford – 448 pages – 1 décembre 2005)

– The Braconid and Ichneumonid Parasitoid Wasps: Biology, Systematics, Evolution and Ecology (Donald L.J. Quicke – Editions : Wiley-Blackwell – 704 pages – 1 décembre 2014)

Les yeux ont pour fonction de réceptionner et de guider l’énergie lumineuse (photons) vers des cellules réceptrices spécialisées (photorécepteurs) qui traduisent cette énergie photonique en énergie électrique. Transmise ensuite au cerveau par des neurones, elle sera analysée et interprétée pour donner naissance à une représentation mentale de l’environnement permettant à l’animal de se déplacer, de repérer sa proie ou son partenaire sexuel, etc. 

Ommatidie insecte

Zoom sur une ommatidie d’une mouche (Source : Université du Minnesota)

Les yeux des vertébrés, constitués d’une structure unique, sont appelés yeux simples. Chez les arthropodes, les yeux sont, quant à eux, dits composés car constitués de plusieurs sous-unités similaires : les ommatidies (voir infographie ci-contre). 

La description anatomique et structurelle des ommatidies, sous-unités de l’oeil composé des insectes, ayant fait l’objet d’un premier article, celui-ci est consacré à la formation de l’image, et à la perception de la distance et du mouvement. 

I) Formation de l’image

La formation de l’image dépend des propriétés optiques de la lentille cornéale et des cônes cristallins de l’ommatidie (lire article sur l’anatomie). Ces deux structures, d’indice de réfraction différent, dévient les ondes lumineuses lorsque celles-ci les traversent.

Les yeux composés des insectes sont de deux types : apposition et superposition (lire article sur l’anatomie).

  • Type apposition

La principale, voire la seule surface réfractante, est la lentille cornéale, parfois les cônes cristallins comme chez les lépidoptères.

Formation de l'image : a) dans un oeil composé de type apposition, la lentille formant une image inversée de l'objet, b) dans un oeil composé de type superposition, les rayons lumineux sont réfractés à l'intérieur de la lentille

Figure 1 : Formation de l’image : a) dans un oeil composé de type apposition, la lentille formant une image inversée de l’objet, b) dans un oeil composé de type superposition, les rayons lumineux sont réfractés à l’intérieur de la lentille (Source : The Insects : Structure and Function – R.F. Chapman – 5ème Edition (2013) – p716 – Modifié par B. GILLES)

La présence de cellules cornéales, également appelées cellules pigmentaires secondaires, canalise la lumière vers le rhabdome de l’ommatidie. Chaque ommatidie fonctionne de ce fait de manière indépendante et produit une image inversée de l’objet du champ visuel dont le centre se situe à la pointe du rhabdome (union des rhabdomères de chaque cellule photoréceptrices) (lire article sur l’anatomie) (Figure 1). Ainsi, dans chaque ommatidie, le rhabdome reçoit une image d’intensité globale variant en fonction de la quantité de lumineuse. Les rhabdomes transmettent collectivement une image en mosaïque constituée de la contribution de chaque ommatidie. Bien qu’entrainant une perte des détails de l’image puisque l’ensemble des cellules photoréceptrices partagent le même champ visuel, ce mécanisme permet à l’insecte de maximiser la quantité de lumière entrant dans le rhabdome.

  • Type superposition

Ces yeux se différencient principalement des yeux appositions par : (suite…)

Les yeux ont pour fonction de réceptionner et de guider l’énergie lumineuse (photons) vers des cellules réceptrices spécialisées (photorécepteurs) qui traduisent cette énergie photonique en énergie électrique. Transmise ensuite au cerveau par des neurones, elle sera analysée et interprétée pour donner naissance à une représentation mentale de l’environnement permettant à l’animal de se déplacer; de repérer sa proie ou son partenaire sexuel, etc.

Les yeux des vertébrés, constitués d’une structure unique, sont appelés yeux simples. Chez les arthropodes, les yeux sont, quant à eux, dits composés car constitués de plusieurs sous-unités similaires : les ommatidies.

Les yeux composés sont apparus tôt dans l’évolution. Ils ont été observés sur des fossiles de crustacés et de chélicérates (scorpions et araignées) du Cambrien (540-485 millions d’années) et sur des insectes du Dévonien (420-360 Ma). Cette période a été favorable à une grande diversification du monde animal. Les yeux composés de l’actuelle limule (Limulus sp., Chélicérates) sont ainsi restés inchangés depuis cette époque (lire cet article).

En raison de leur petite taille, l’observation et l’étude des yeux des insectes a du attendre l’invention du microscope au XVIIème siècle. Les premières descriptions en ont été réalisées par le chimiste, physicien et mathématicien anglais Robert Hooke en 1665, par le savant néerlandais Antoni Van Leeuwenhoek en 1695 et par le physiologiste autrichien Sigmund Exner en 1891.

I) Présence des yeux composés

Les yeux composés se retrouvent chez la quasi-totalité des espèces d’insectes : leur taille, leur forme et leur  structure varient cependant entre les familles et les espèces.

Chez les Aptérygotes (dépourvus d’ailes), insectes qualifiés de « primitifs », ils sont absents par exemple chez les Thysanoures (ordre d’insectes aptères) et les Protoures (arthropodes pancrustacés hexapodes longtemps considérés comme des insectes) et ne sont constitués que de 8 ommatidies chez les autres.

Par contre, chez les Ptérygotes (pourvus d’ailes), insectes qualifiés de « modernes », le nombre d’ommatidies peut être particulièrement élevé : 800 chez les drosophiles (Diptères), 7 500 chez les Diopsidae (Diptères) (lire cet article),  10 000 chez les bourdons (Hyménoptères), ou encore 30 000 chez les Odonates (libellules).

Certaines espèces cavernicoles, souterraines comme les termites (Isoptères), parasites aux ailes atrophiées (Phthiraptera et Siphonaptera), ou de cochenilles (Hémiptères) en sont dépourvus. L’oeil de la fourmi Hyponera punctatissima (Hyménorptères – Formicidae) n’est constitué, quant à lui, que d’une seule ommatidie.

II) Structure d’une ommatidie

Chaque ommatidie est constituée de 3 parties : optique, de collecte de la lumière et sensorielle.

Figure 1 : Oeil composé et ommatidies d'un insecte (Source : Ecole Polytechnique Fédérale de Lausanne)

Figure 1 : Oeil composé et ommatidies d’un insecte (Source : Ecole Polytechnique Fédérale de Lausanne)

Comme l’ensemble du corps des insectes, les yeux composés sont couverts d’une cuticule (lire cet article), mais pour des raisons évidentes, celle-ci est à cet endroit transparente, incolore et forme une cornée, ou lentille biconvexe, à la surface de chaque ommatidie.

Vu de dessus, les ommatidies forment des facettes hexagonales placées les unes à coté des autres (figure 1).

La cornée est synthétisée et sécrétée par deux cellules épidermiques, cellules cornéales, ou aussi cellules pigmentaires primaires. Sous la cornée se trouvent 4 cellules (cellules Semper) dont la fonction est de produire, chez certaines espèces, une seconde lentille rigide et transparente appelée cône cristallin (Figure 2). Sous la Cornée et le cône cristallin sont placées les cellules sensorielles (photorécepteurs ou cellules rétiniennes) qui sont des neurones allongés, généralement au nombre de 8, parfois de 7 ou de 9, bordées latéralement par 12 à 18 cellules de soutien, séparant les ommatidies entre elles, et appelées cellules pigmentaires secondaires (figure 2). Les photorécepteurs traversent la lame basale (lamina basale) où ils se connectent aux neurones du nerfs optique au niveau du lobe optique.

La marge interne des photorécepteurs est composée de (suite…)

Troisième partie : les récepteurs de tension et d’étirement (propriocepteurs)

Comme l’ensemble des arthropodes, les insectes ont un squelette externe, l’exosquelette, constitué de chitine et formant la cuticule (lire cet article). Ses propriétés isolantes impliquent que la cuticule crée une barrière à la réception des stimuli de l’environnement extérieur vers le milieu physiologique interne. Afin de contourner cette problématique, l’évolution a fait surgir tout un ensemble de structures destinées à transmettre une large gamme de types de stimuli à l’insecte qui lui permettent d’appréhender de manière efficace et précise son environnement et de répondre favorablement à toute modification par un comportement adapté.

Parmi ces structures sensorielles, certaines sont sensibles aux distorsions mécaniques (mécanorécepteurs : objet de cette article), d’autres à la lumière (photorécepteurs) et d’autres encore à des composants chimiques (chémorécepteurs ou chimiorécepteurs).

I) Généralités

Les mécanorécepteurs sont classés en trois grandes catégories (Tableau I) :

Tableau I : catégories des mécanorécepteurs chez les insectes
Catégories Position anatomique Types Fonctions
Extérorécepteurs Récepteurs cuticulaires (Cliquez ici) Surface de la cuticule Sensilles simples Toucher, variation de pression (air ou eau), détection de la gravité, proprioception*
Sensilles campaniformes Variation de pression sur la cuticule
Intérorécepteurs Récepteurs intradermiques ou subcuticulaires (cliquez ici) Derme Organes chordotonaux Variation de pression (air, eau), détection de la gravité, proprioception*
Propriorécepteurs Tissus internes Pas de structure précise Proprioception*
Proprioception : perception de la position des différentes parties du corps

Dotés de propriétés étonnantes et multiples, ils peuvent intervenir dans le sens du toucher lorsqu’ils sont stimulés par le contact d’un objet ou un substrat, dans le sens de l’ouïe par une stimulation de l’air ou de l’eau et aussi dans le contrôle de la posture et des mouvements quand ils sont excités par des déplacements de parties du corps de l’insecte.

II) Description structurelle et fonction

Les récepteurs de tension et d’étirement (aussi appelés « extensibles ») sont des structures simples, contrairement aux autres types de mécanorécepteurs : cuticulaires (lire partie 1) et chordotonaux (lire partie 2).

Récepteurs d'étirement non-spécialisés

Illustration 1 : Récepteurs d’étirement non-spécialisés (d’après Sugawara, 1981) – a) Neurone multipolaire libre dans l’hémolymphe où les terminaisons dendritiques passent entre l’épithélium et les fibres musculaires – b) coupes transversales d’un dendrite en dessous d’une couche musculaire (Source : The Insects : Structure and Function – R.F. Chapman – 5ème Edition (2013) -p765 – Modifié par Benoît GILLES)

Leur structure, de forme variée, est composée d’un simple neurone multipolaire ramifié de terminaisons dendritiques libres, évoluant dans l’hémolymphe (liquide circulatoire des arthropodes) ou soutenu par un tissu. Les dendrites sont recouverts d’une gaine : la cellule gliale. Leur partie terminale est quant à elle nue et s’insère dans un tissu conjonctif, dans une fibre musculaire ou dans un nerf (voir illustration 1).

Leur fonction est de détecter toute modification de la forme du corps de l’insecte ainsi que de rétablir sa position initiale (mécanisme peu compris encore). Leur nombre varie selon les espèce. Le nombre de ces récepteurs est toutefois limité chez les insectes à la cuticule épaisse et dure (les Coléoptères par exemple), dont l’exosquelette est particulièrement rigide et peu soumis à la déformation.

L’activation de ces récepteurs, provoquée par l’étirement des dendrites, induit une réponse de type tonique et proportionnelle au degré d’étirement.

Cependant, les mécanismes de couplage et de transduction du message nerveux restent encore inconnus (lire cet article).

III) Récepteurs non-spécialisés

Comme leur nom l’indique, les récepteurs non-spécialisés se rencontrent dans (suite…)

Deuxième partie : les organes chordotonaux

Comme l’ensemble des arthropodes, les insectes ont un squelette externe, l’exosquelette, constitué de chitine et formant la cuticule (lire cet article). Ses propriétés isolantes impliquent que la cuticule crée une barrière à la réception des stimuli de l’environnement extérieur vers le milieu physiologique interne. Afin de contourner cette problématique, l’évolution a fait surgir tout un ensemble de structures destinées à transmettre une large gamme de types de stimuli à l’insecte qui lui permettent d’appréhender de manière efficace et précise son environnement et de répondre favorablement à toute modification par un comportement adapté.

Parmi ces structures sensorielles, certaines sont sensibles aux distorsions mécaniques (mécanorécepteurs : objet de cette article), d’autres à la lumière (photorécepteurs) et d’autres encore à des composants chimiques (chémorécepteurs ou chimiorécepteurs).

I) Généralités

Les mécanorécepteurs sont classés en trois grandes catégories (Tableau I) :

Tableau I : catégories des mécanorécepteurs chez les insectes
Catégories Position anatomique Types Fonctions
Extérorécepteurs Récepteurs cuticulaires (cliquez ici) Surface de la cuticule Sensilles simples Toucher, variation de pression (air ou eau), détection de la gravité, proprioception*
Sensilles campaniformes Variation de pression sur la cuticule
Intérorécepteurs Récepteurs intradermiques ou subcuticulaires Derme Organes chordotonaux Variation de pression (air, eau), détection de la gravité, proprioception*
Propriorécepteurs Tissus internes Pas de structure précise Proprioception*
Proprioception : perception de la position des différentes parties du corps

Dotés de propriétés étonnantes et multiples, ils peuvent intervenir dans le sens du toucher lorsqu’ils sont stimulés par le contact d’un objet ou un substrat, dans le sens de l’ouïe par une stimulation de l’air ou de l’eau et aussi dans le contrôle de la posture et des mouvements quand ils sont excités par des déplacements de parties du corps de l’insecte.

II) Description structurelle

Les organes chordotonaux, ou scolopophores, sont des récepteurs intradermiques agissant le plus souvent comme des propriocepteurs (perception de la position des différentes parties du corps) ou intervenant dans l’audition.

Ils sont constitués d’éléments simples appelés scolopidies, attachés à la cuticule par une ou plusieurs de leurs extrémités. Ils peuvent être solitaires ou regroupés en amas.

Chaque scolopidie est composée de 3 cellules (voir figure 1) : (suite…)

Première partie : les mécanorécepteurs cuticulaires

Comme l’ensemble des arthropodes, les insectes ont un squelette externe, l’exosquelette, constitué de chitine et formant la cuticule (lire cet article). Ses propriétés isolantes impliquent que la cuticule crée une barrière à la réception des stimuli de l’environnement extérieur vers le milieu physiologique interne. Afin de contourner cette problématique, l’évolution a fait surgir tout un ensemble de structures destinées à transmettre une large gamme de types de stimuli à l’insecte qui lui permettent d’appréhender de manière efficace et précise son environnement et de répondre favorablement à toute modification par un comportement adapté.

Parmi ces structures sensorielles, certaines sont sensibles aux distorsions mécaniques (mécanorécepteurs : objet de cette article), d’autres à la lumière (photorécepteurs) et d’autres encore à des composants chimiques (chémorécepteurs ou chimiorécepteurs).

I) Généralités

Les mécanorécepteurs sont classés en trois grandes catégories (Tableau I) :

Tableau I : catégories des mécanorécepteurs chez les insectes
Catégories Position anatomique Types Fonctions
Extérorécepteurs Récepteurs cuticulaires Surface de la cuticule Sensilles simples Toucher, variation de pression (air ou eau), détection de la gravité, proprioception*
Sensilles campaniformes Variation de pression sur la cuticule
Intérorécepteurs Récepteurs intradermiques ou subcuticulaires (cliquez ici) Derme Organes chordotonaux Variation de pression (air, eau), détection de la gravité, proprioception*
Propriorécepteurs Tissus internes Pas de structure précise Proprioception*
* Proprioception : perception de la position des différentes parties du corps

Dotés de propriétés étonnantes et multiples, ils peuvent intervenir dans le sens du toucher lorsqu’ils sont stimulés par le contact d’un objet ou un substrat, dans le sens de l’ouïe par une stimulation de l’air ou de l’eau et aussi dans le contrôle de la posture et des mouvements quand ils sont excités par des déplacements de parties du corps de l’insecte.

Deux types de mécanorécepteurs cuticulaires se rencontrent chez les insectes : (suite…)

Les insectes sont les premiers organismes à avoir développé la capacité de voler, il y a 170 millions d’années (lire article sur la phylogénie). L’acquisition du vol constitua une innovation majeure dans leur évolution : elle leur a procuré un avantage décisif comme échapper à la prédation, fuir un environnement hostile pour en rechercher un plus favorable et aussi rencontrer des individus du sexe opposé pour la reproduction.

Contrairement à l’aile des vertébrés, celle des insectes ne possède pas de muscles intrinsèques (à l’intérieur de l’organe), elle est rattachée au thorax par un ensemble complexe d’éléments articulés appelés pteralia (lire cet article sur l’anatomie de l’aile).

Leonard de Vinci a déterminé que le vol nécessitait trois éléments : 1) Un moteur léger et puissant ; 2) Des ailes capables de générer des forces aérodynamiques suffisantes ; 3) Un système de contrôle perfectionné pour maintenir le corps en l’air. Les insectes satisfont ces trois critères.

Malgré d’importantes recherches sur le vol des insectes, celui-ci demeure encore peu expliqué car difficile à observer en raison de la taille de ces animaux et de la vitesse des mouvements. Il reste un sujet complexe et vaste. Avec cet article, j’ai voulu synthétiser trois points essentiels pour vous permettre d’en apprendre davantage sur : l’aérodynamisme, la musculature et le système de contrôle.

I) Ailes et aérodynamisme

Le vol des insectes est bien plus compliqué que celui des avions qui repose sur 2 principes :

  • Principe de Bernouilli : l’aile est profilée de telle manière qu’en se déplaçant, elle provoque une division du flux d’air : le courant circulant au dessus, en accélérant, crée une dépression et donc une aspiration (force perpendiculaire à la surface de l’aile), ce phénomène est appelé la portance.
  • La Portance : l’inclinaison de l’aile (son angle d’attaque) augmente la force d’aspiration, au delà de 15°, cette portance disparaît, entrainant le décrochage de l’avion et donc sa chute.

Les principes physiques conditionnant le vol repose sur la mécanique des fluides car un gaz se comporte comme un liquide visqueux.

Chez les insectes, l’aile est plane et présente un angle d’attaque de 30-40°, donc bien supérieur au 15° : Comment peuvent-ils se maintenir en vol dans ces conditions?

I) 1 : Le battement des ailes

Contrairement aux idées reçues, les insectes, hormis les libellules, ne battent pas des ailes de haut en bas, mais pratiquement sur un plan horizontal d’avant en arrière (mouvement sinusoïdal). Lorsque l’insecte bat de l’aile, il se forme un (suite…)

Les insectes sont les seuls invertébrés ayant acquis la capacité de voler (place des insectes dans la classification, lire cet article). Contrairement aux autres animaux volant comme les oiseaux et les chauve-souris, où les ailes sont issues des membres antérieurs, celles des insectes ont une structure et une origine totalement différentes. Leur origine et leur histoire évolutive restent encore confuses et controversées. D’un système simple au début, le fonctionnement des ailes s’est avéré par la suite d’une incroyable complexité!

Origine et évolution

Les premiers insectes ailés fossiles connus sont datés du Paléozoïque (ère primaire : 545-245 millions d’années) et sont tous terrestres. L’acquisition des ailes et du vol a permis une explosion de diversité de familles (Hyménoptères, Lépidoptères, Diptères…), de genres et d’espèces (lire cet article). L’avantage évolutif procuré fut gigantesque : meilleure dispersion (recherche de nourriture, d’environnements favorables…etc.), capacité à fuir les prédateurs, meilleure stratégie reproductive. Cet avantage fut tel qu’aujourd’hui, les insectes ailés ou « Ptérygotes » constituent la quasi-totalité des espèces d’insectes. Les insectes non ailés dits « Aptérygotes » ne représentent, eux, qu’une faible minorité des espèces.

Deux théories ont été proposées pour expliquer l’origine des ailes des insectes.

  • La première, plus traditionnelle et supportée par des évidences expérimentales et des modélisations théoriques, suggère que la sélection naturelle aurait agi sur des insectes arboricoles (« Protoptérygotes« ), munis d’excroissances sur le thorax et effectuant du vol plané, en favorisant l’élargissement de ces organes et en mettant en place les innovations techniques et biologiques pour battre des ailes (certaines espèces de fourmis contrôlent leur chute avec leurs pattes : ici).
  • Selon les tenants de la seconde, le vol serait issu d’insectes semiaquatiques utilisant des excroissances thoraciques pour écumer l’eau, à la manière des larves d’Ephéméroptères et de Plécoptères : la sélection naturelle leur aurait permis de quitter le milieu aquatique pour celui des airs.
Description des différentes éléments d'une patte de crustacé (crustacea.academic)

Différentes éléments d’une patte de crustacé (Source : crustacea.academic)

Ces dernières décennies, la paléo-entomologiste tchèque Jarmila Kukalova-Peck a présenté une nouvelle théorie. Selon elle, chez les arthropodes comme les crustacés, les pattes sont ramifiés (« biramés »), avec un appendice dorsal ou externe (exopodite) et un appendice ventral ou interne (endopodite), une anatomie qui n’est pas retrouvée chez les insectes où les pattes ne sont constituées que d’un appendice (voir illustration). L’idée est que les ailes seraient issues d’exopodites modifiées (2ème et 3ème paires), tandis que la première paire aurait été perdue ou incorporée au thorax.

Cette théorie a l’avantage d’expliquer, contrairement aux deux autres, de la mise en place d’une (suite…)

Description générale des différents types de pièces buccales des insectes adaptées au régime alimentaire

Les insectes, présents sur terre depuis au moins 479 millions d’années (lire cet article), ont pu conquérir tous les types de milieu et d’environnement grâce à leur capacité d’exploiter l’ensemble des ressources alimentaires de ces milieux. La sélection naturelle a favorisé, au cours de l’évolution, l’adaptation de pièces buccales spécialisées au régime alimentaire de l’espèce, voire même à une période précise du cycle de développement de l’insecte (exemple : chenille/papillon).

On a tous pu observer des insectes en train de se nourrir, papillons, mouches, coléoptères… etc., vous avez sans doute remarqué la grande diversité des modes d’alimentation et des types de pièces buccales. Certains broient leur nourriture comme les chenilles (Lépidoptères), les Coléoptères et les Hyménoptères (guêpes, fourmis), d’autres aspirent comme les moustiques (Diptères) et les punaises (Hémiptères), d’autres lèchent comme les mouches (Diptères) et d’autres ne s’alimentent pas à l’état adulte (imago) et ont des pièces buccales atrophiées (Lépidoptères, Plécoptères, Coléoptères….). Ces types ont été classées en 3 grandes catégories :

  1. les « broyeurs« 
  2. les « piqueurs« 
  3. les « suceurs« 
Différents types d'orientation des pièces buccales chez les insectes (Source : University Utah)

Différents types d’orientation des pièces buccales chez les insectes (Source : University Utah)

Les pièces buccales se situent sur la tête selon 3 axes (voir illustration ci-contre) :

  1. Prognathesdirigées vers l’avant dans l’axe du corps (Coléoptères phytophages par exemple)
  2. Orthognathes (Hypognathes en anglais) : dirigées vers le bas perpendiculaires à l’axe du corps comme les criquets et sauterelles (Orthoptères) et les mouches (Diptères)
  3. Hypognathes (Opisthognathes en anglais) : dirigées vers l’arrière comme les punaises (Hémiptères).

Les insectes peuvent être également classés en (suite…)

Les insectes sont des invertébrés arthropodes constitués d’un squelette externe (cuticule ou exosquelette) qu’ils doivent changer régulièrement pour pouvoir grandir. Pour plus d’informations, lire cet article.

Chaque changement de cuticule est la mue. Chez certaines espèces, le passage du stade larvaire au stade adulte implique un changement profond de morphologie, de biologie et d’écologie. Ce phénomène est appelé la métamorphose.

La métamorphose : explication

Définition : Changement morpho-anatomique et physiologique, irréversible, changeant le plan d’organisation d’un animal survenant lors du passage à l’état adulte. A l’issu de ce dernier stade de développement, il y a acquisition de la capacité de reproduction, de la morphologie et des organes définitifs.

Il existe deux types de métamorphose, Holométabole et Hémimétabole.

  • La métamorphose incomplète : Hémimétabolisme

Ce type de développement caractérise les insectes dont la (suite…)